
Dustin Banham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7609010/publications.pdf Version: 2024-02-01

ΠΗΣΤΙΝ ΒΛΝΗΛΜ

#	Article	IF	CITATIONS
1	Methods for Remit Voltage Reversal of Proton Exchange Membrane Fuel Cells. Frontiers in Energy Research, 2022, 10, .	2.3	1
2	Native Ligand Carbonization Renders Common Platinum Nanoparticles Highly Durable for Electrocatalytic Oxygen Reduction: Annealing Temperature Matters. Advanced Materials, 2022, 34, e2202743.	21.0	34
3	Ultralow platinum loading proton exchange membrane fuel cells: Performance losses and solutions. Journal of Power Sources, 2021, 490, 229515.	7.8	43
4	Pulsed vs. galvanostatic accelerated stress test protocols: Comparing predictions for anode reversal tolerance in proton exchange membrane fuel cells. Journal of Power Sources, 2021, 500, 229986.	7.8	5
5	New approach for rapidly determining Pt accessibility of Pt/C fuel cell catalysts. Journal of Materials Chemistry A, 2021, 9, 13471-13476.	10.3	31
6	Integrating PGMâ€Free Catalysts into Catalyst Layers and Proton Exchange Membrane Fuel Cell Devices. Advanced Materials, 2019, 31, e1804846.	21.0	121
7	Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 2018, 3, 279-289.	39.5	1,944
8	Critical advancements in achieving high power and stable nonprecious metal catalyst–based MEAs for real-world proton exchange membrane fuel cell applications. Science Advances, 2018, 4, eaar7180.	10.3	189
9	Embellished hollow spherical catalyst boosting activity and durability for oxygen reduction reaction. Nano Energy, 2018, 51, 745-753.	16.0	33
10	New insights into non-precious metal catalyst layer designs for proton exchange membrane fuel cells: Improving performance and stability. Journal of Power Sources, 2017, 344, 39-45.	7.8	43
11	Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Letters, 2017, 2, 629-638.	17.4	443
12	Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding?. Energy and Environmental Science, 2017, 10, 296-305.	30.8	127
13	Novel Mesoporous Carbon Supports for PEMFC Catalysts. Catalysts, 2015, 5, 1046-1067.	3.5	39
14	Accelerated Stress Testing by Rotating Disk Electrode for Carbon Corrosion in Fuel Cell Catalyst Supports. Journal of the Electrochemical Society, 2015, 162, F783-F788.	2.9	69
15	A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Power Sources, 2015, 285, 334-348.	7.8	457
16	Multiscale tomography of nanoporous carbon-supported noble metal catalyst layers. Journal of Power Sources, 2013, 228, 185-192.	7.8	70
17	Effect of carbon support nanostructure on the oxygen reduction activity of Pt/C catalysts. Journal of Materials Chemistry A, 2013, 1, 2812.	10.3	53
18	First time investigation of Pt nanocatalysts deposited inside carbon mesopores of controlled length and diameter. Journal of Materials Chemistry, 2012, 22, 7164.	6.7	29

#	Article	IF	CITATIONS
19	Effect of Pt-loaded carbon support nanostructure on oxygen reduction catalysis. Journal of Power Sources, 2011, 196, 5438-5445.	7.8	55
20	Oxygen reduction activity dependence on the mesoporous structure of imprinted carbon supports. Electrochemistry Communications, 2010, 12, 1666-1669.	4.7	28
21	Bimodal, templated mesoporous carbons for capacitor applications. Carbon, 2010, 48, 1056-1063.	10.3	55