
Ion M Tiginyanu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7608910/publications.pdf Version: 2024-02-01

ΙΟΝ Μ ΤΙΩΙΝΥΛΝΗ

#	Article	IF	CITATIONS
1	Silver-doped zinc oxide single nanowire multifunctional nanosensor with a significant enhancement in response. Sensors and Actuators B: Chemical, 2016, 223, 893-903.	4.0	170
2	Enhanced ethanol vapour sensing performances of copper oxide nanocrystals with mixed phases. Sensors and Actuators B: Chemical, 2016, 224, 434-448.	4.0	140
3	Threeâ€Dimensional SnO ₂ Nanowire Networks for Multifunctional Applications: From Highâ€Temperature Stretchable Ceramics to Ultraresponsive Sensors. Advanced Electronic Materials, 2015, 1, 1500081.	2.6	116
4	Versatile Growth of Freestanding Orthorhombic α-Molybdenum Trioxide Nano- and Microstructures by Rapid Thermal Processing for Gas Nanosensors. Journal of Physical Chemistry C, 2014, 118, 15068-15078.	1.5	114
5	Multifunctional device based on ZnO:Fe nanostructured films with enhanced UV and ultra-fast ethanol vapour sensing. Materials Science in Semiconductor Processing, 2016, 49, 20-33.	1.9	73
6	Lightâ€Induced Motion of Microengines Based on Microarrays of TiO ₂ Nanotubes. Small, 2016, 12, 5497-5505.	5.2	68
7	Rapid switching and ultra-responsive nanosensors based on individual shell–core Ga2O3/GaN:O @SnO2 nanobelt with nanocrystalline shell in mixed phases. Sensors and Actuators B: Chemical, 2015, 221, 544-555.	4.0	62
8	Integration of individual TiO ₂ nanotube on the chip: Nanodevice for hydrogen sensing. Physica Status Solidi - Rapid Research Letters, 2015, 9, 171-174.	1.2	56
9	Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites. Scientific Reports, 2016, 6, 32913.	1.6	56
10	Zinc oxide nanotetrapods with four different arm morphologies for versatile nanosensors. Sensors and Actuators B: Chemical, 2018, 262, 425-435.	4.0	50
11	Three-dimensional Aerographite-GaN hybrid networks: Single step fabrication of porous and mechanically flexible materials for multifunctional applications. Scientific Reports, 2015, 5, 8839.	1.6	45
12	Ordered arrays of metal nanotubes in semiconductor envelope. Electrochemistry Communications, 2008, 10, 731-734.	2.3	42
13	Properties of a single SnO2:Zn2SnO4 – Functionalized nanowire based nanosensor. Ceramics International, 2018, 44, 4859-4867.	2.3	34
14	Porous semiconductor compounds. Semiconductor Science and Technology, 2020, 35, 103001.	1.0	33
15	Size-dependent UV and gas sensing response of individual Fe2O3-ZnO:Fe micro- and nanowire based devices. Journal of Alloys and Compounds, 2017, 701, 920-925.	2.8	28
16	Exceptional integration of metal or semimetal nanowires in human-hair-like glass fiber. Materials Letters, 2010, 64, 1902-1904.	1.3	27
17	Self-organized and self-propelled aero-GaN with dual hydrophilic-hydrophobic behaviour. Nano Energy, 2019, 56, 759-769.	8.2	26
18	Metallized Porous GaP Templates for Electronic and Photonic Applications. ECS Journal of Solid State Science and Technology, 2015, 4, P57-P62.	0.9	23

#	Article	IF	CITATIONS
19	Self-organized nucleation layer for the formation of ordered arrays of double-walled TiO2 nanotubes with temperature controlled inner diameter. Physica Status Solidi - Rapid Research Letters, 2010, 4, 100-102.	1.2	22
20	Formation of InP nanomembranes and nanowires under fast anodic etching of bulk substrates. Electrochemistry Communications, 2014, 47, 29-32.	2.3	21
21	Fabrication of GaN nanowalls and nanowires using surface charge lithography. Materials Letters, 2008, 62, 4576-4578.	1.3	19
22	Photocatalytic properties of TiO2 nanotubes doped with Ag, Au and Pt or covered by Ag, Au and Pt nanodots. Surface Engineering and Applied Electrochemistry, 2015, 51, 3-8.	0.3	18
23	Self-Organized Three-Dimensional Nanostructured Architectures in Bulk GaN Generated by Spatial Modulation of Doping. ECS Journal of Solid State Science and Technology, 2016, 5, P218-P227.	0.9	18
24	Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light. Small, 2020, 16, 1905141.	5.2	18
25	Membrane-assisted revelation of the spatial nanoarchitecture of dislocation networks. Materials Letters, 2011, 65, 360-362.	1.3	16
26	ZnAl ₂ O ₄ â€Functionalized Zinc Oxide Microstructures for Highly Selective Hydrogen Gas Sensing Applications. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700772.	0.8	16
27	Ultra-lightweight pressure sensor based on graphene aerogel decorated with piezoelectric nanocrystalline films. Nanotechnology, 2016, 27, 475203.	1.3	15
28	Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles. Beilstein Journal of Nanotechnology, 2016, 7, 1330-1337.	1.5	14
29	Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires. Beilstein Journal of Nanotechnology, 2020, 11, 966-975.	1.5	14
30	Design of titania nanotube structures by focused laser beam direct writing. Journal of Applied Physics, 2013, 114, .	1.1	13
31	Flexible pressure sensor based on graphene aerogel microstructures functionalized with CdS nanocrystalline thin film. Superlattices and Microstructures, 2018, 117, 418-422.	1.4	13
32	Terahertz shielding properties of aero-GaN. Semiconductor Science and Technology, 2019, 34, 12LT02.	1.0	13
33	Sensing up to 40 atm Using Pressure ensitive Aeroâ€GaN. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900012.	1.2	13
34	Cathodoluminescence of TiO2 nanotubes prepared by low-temperature anodization of Ti foils. Materials Letters, 2010, 64, 2155-2158.	1.3	12
35	Electromagnetic interference shielding in X-band with aero-GaN. Nanotechnology, 2019, 30, 34LT01.	1.3	12
36	Aero-Ga2O3 Nanomaterial Electromagnetically Transparent from Microwaves to Terahertz for Internet of Things Applications. Nanomaterials, 2020, 10, 1047.	1.9	12

#	Article	IF	CITATIONS
37	Core–Shell GaAs-Fe Nanowire Arrays: Fabrication Using Electrochemical Etching and Deposition and Study of Their Magnetic Properties. Nanomaterials, 2022, 12, 1506.	1.9	12
38	Environmentally friendly approach for nonlithographic nanostructuring of materials. Physica Status Solidi - Rapid Research Letters, 2007, 1, 98-100.	1.2	11
39	Two-Dimensional Metallo-Semiconductor Networks for Electronic and Photonic Applications. ECS Transactions, 2012, 41, 67-74.	0.3	10
40	Design and maskless fabrication of ultrathin suspended membranes of GaN. Physica Status Solidi - Rapid Research Letters, 2012, 6, 148-150.	1.2	10
41	Memristive GaN ultrathin suspended membrane array. Nanotechnology, 2016, 27, 295204.	1.3	9
42	Atomically thin semiconducting layers and nanomembranes: a review. Semiconductor Science and Technology, 2017, 32, 033001.	1.0	9
43	Ultrafast third-order optical nonlinearity in SnS 2 layered compound for photonic applications. Optical Materials, 2018, 76, 69-74.	1.7	9
44	Synthesis and optical properties of Ga2O3 nanowires grown on GaS substrate. Thin Solid Films, 2019, 689, 137502.	0.8	9
45	Aero-ZnS architectures with dual hydrophilic–hydrophobic properties for microfluidic applications. APL Materials, 2020, 8, .	2.2	9
46	Crystallinity and optical properties of β-Ga2O3/Ga2S3 layered structure obtained by thermal annealing of Ga2S3 semiconductor. Materials Science in Semiconductor Processing, 2021, 121, 105314.	1.9	9
47	Highly Porous and Ultra-Lightweight Aero-Ga2O3: Enhancement of Photocatalytic Activity by Noble Metals. Materials, 2021, 14, 1985.	1.3	9
48	ZnSeâ€based conductive nanotemplates for nanofabrication. Physica Status Solidi - Rapid Research Letters, 2009, 3, 97-99.	1.2	8
49	Structural and Vibrational Properties of CdAl ₂ S ₄ under High Pressure: Experimental and Theoretical Approach. Journal of Physical Chemistry C, 2014, 118, 15363-15374.	1.5	8
50	A SnS2-based photomemristor driven by sun. Journal of Applied Physics, 2018, 123, 024506.	1.1	8
51	Individual CdS-covered aerographite microtubes for room temperature VOC sensing with high selectivity. Materials Science in Semiconductor Processing, 2019, 100, 275-282.	1.9	8
52	Improving gas sensing by CdTe decoration of individual Aerographite microtubes. Nanotechnology, 2019, 30, 065501.	1.3	8
53	Structural and Vibrational Study of Pseudocubic CdIn ₂ Se ₄ under Compression. Journal of Physical Chemistry C, 2014, 118, 26987-26999.	1.5	7
54	Targeting Endothelial Cells with Multifunctional GaN/Fe Nanoparticles. Nanoscale Research Letters, 2017, 12, 486.	3.1	7

#	Article	IF	CITATIONS
55	Hierarchical Aerographite 3D flexible networks hybridized by InP micro/nanostructures for strain sensor applications. Scientific Reports, 2018, 8, 13880.	1.6	7
56	Mesenchymal stem cells proliferation and remote manipulation upon exposure to magnetic semiconductor nanoparticles. Biotechnology Reports (Amsterdam, Netherlands), 2020, 25, e00435.	2.1	7
5 7	Integration of Ge nanowire arrays in glass micro-fibers. Surface Engineering and Applied Electrochemistry, 2011, 47, 103-106.	0.3	6
58	Learning mechanisms in memristor networks based on GaN nanomembranes. Journal of Applied Physics, 2018, 124, 152110.	1.1	6
59	Free-Standing Large-Area Nanoperforated Gold Membranes Fabricated by Hopping Electrodeposition. ECS Journal of Solid State Science and Technology, 2020, 9, 064010.	0.9	6
60	Photonic Crystal Structures Based on GaN Ultrathin Membranes. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 271-275.	0.1	5
61	Modulation of Electrical Conductivity and Lattice Distortions in Bulk HVPE-Grown GaN. ECS Journal of Solid State Science and Technology, 2019, 8, Q141-Q146.	0.9	5
62	Ultrafast Third-Order Nonlinear Optical Response Excited by fs Laser Pulses at 1550 nm in GaN Crystals. Materials, 2021, 14, 3194.	1.3	5
63	Ultrathin tin sulfide field-effect transistors with subthreshold slope below 60 mV/decade. Nanotechnology, 2022, 33, 405207.	1.3	5
64	Micro-Raman study of columnar GaAs nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1562-1566.	0.8	4
65	Self-induced oscillation of the macropore diameter in n-type silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1533-1535.	0.8	4
66	Ultra-Thin GaN Membranes Fabricated by Using Surface Charge Lithography. ECS Transactions, 2011, 35, 13-19.	0.3	4
67	Fabrication of photonic crystal circuits based on GaN ultrathin membranes by maskless lithography. , 2015, , .		4
68	Multilayer porous structures on GaN for the fabrication of Bragg reflectors. Proceedings of SPIE, 2017, , .	0.8	4
69	Photoluminescence of Eu-doped ZnO structures. , 2005, , .		3
70	Surface charge lithography for GaN micro- and nanostructuring. Proceedings of SPIE, 2009, , .	0.8	3
71	Ultra-thin semiconductor membrane nanotechnology based on surface charge lithography. Proceedings of SPIE, 2011, , .	0.8	3
72	Porous InP as Piezoelectric Component in Magneto-Electric Composite Sensors. ECS Transactions, 2011. 35. 67-72.	0.3	3

#	Article	IF	CITATIONS
73	The impact of nanoperforation on persistent photoconductivity and optical quenching effects in suspended GaN nanomembranes. Applied Physics Letters, 2013, 103, 243113.	1.5	3
74	Obtaining of II-VI compound substrates with controlled electrical parameters and prospects of their application for nanoporous structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1404-1407.	0.8	3
75	GaN nanostructuring for the fabrication of thin membranes and emerging applications. Turkish Journal of Physics, 2014, 38, 328-368.	0.5	3
76	Self-Propelled Aero-GaN Based Liquid Marbles Exhibiting Pulsed Rotation on the Water Surface. Materials, 2021, 14, 5086.	1.3	3
77	The microwave properties of tin sulfide thin films prepared by RF magnetron sputtering techniques. Nanotechnology, 2022, 33, 235705.	1.3	3
78	Hydrophobic ZnO used in EWOD technology and SAW devices for better bio-fluid slip AT microchannel walls controlled by DC pulses. , 2012, , .		2
79	Template Assisted Formation of Metal Nanotubes. Nanoscience and Technology, 2016, , 473-506.	1.5	2
80	Possible coherent backscattering of lightwaves from a strongly absorbing nanoporous medium. Journal of Optics (United Kingdom), 2018, 20, 075606.	1.0	2
81	Efficient Focusing with an Ultra-Low Effective-Index Lens Based on Photonic Crystals. Materials Research Society Symposia Proceedings, 2005, 869, 441.	0.1	1
82	Effect of Al Sn — Doping on properties of zinc oxide nanostructured films grown by magnetron sputtering. , 2013, , .		1
83	Nanowire Networks: Three-Dimensional SnO2Nanowire Networks for Multifunctional Applications: From High-Temperature Stretchable Ceramics to Ultraresponsive Sensors (Adv. Electron. Mater.) Tj ETQq1 1 0.784	I 3216 4 rgBT	/ D verlock
84	Special issue on electrochemical processing of semiconductor materials. Semiconductor Science and Technology, 2016, 31, 010301.	1.0	1
85	Raman scattering by porous structures with InAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 883-885.	0.8	0
86	Nearfield effect in a nanotube/nanopor array system for application in EWOD devices that are operating in THz region. , 2012, , .		0
87	Electrochemistry-based maskless nanofabrication. , 2012, , .		0
88	Copper doped zinc oxide micro- and nanostructures for room-temperature sensorial applications. , 2013, , .		0
89	Rapid synthesis and characterization of micro and nanostructures of molybdenum trioxide. , 2013, , .		0

#	Article	IF	CITATIONS
91	Structure and morphology of nanoporous zno and dark currentâ€Voltage characteristics of the glass/(TCO)/zno/poly[2,7â€(9,9â€dioctylfluorene)â€ <i>alt</i> â€(5,5'â€bithiophene)/ag structure. Journal of Applied Polymer Science, 2015, 132, .	1.3	0
92	Microengines: Lightâ€Induced Motion of Microengines Based on Microarrays of TiO ₂ Nanotubes (Small 39/2016). Small, 2016, 12, 5508-5508.	5.2	0
93	<i>A Special Issue on</i> Nanotechnologies and Nanomaterials for Electronic, Phononic and Photonic Applications. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 637-639.	0.1	0
94	<l>A Special Section on</l> Nanotechnologies and Nanomaterials for Electronic and Photonic Applications. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 193-195.	0.1	0
95	The Role of Alternating Current on Photo-Assisted Electrochemical Porosification of GaN. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 287-290.	0.1	0
96	(Invited) New Avenues for Exploration and Aplications of GaN. ECS Meeting Abstracts, 2019, , .	0.0	0
97	Large-Sized Nanocrystalline Ultrathin β-Ga2O3 Membranes Fabricated by Surface Charge Lithography. Nanomaterials, 2022, 12, 689	1.9	Ο