Peter Szabo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7608705/publications.pdf

Version: 2024-02-01

434195 394421 1,337 31 19 31 citations h-index g-index papers 31 31 31 1873 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Computational modeling of concrete flow: General overview. Cement and Concrete Research, 2007, 37, 1298-1307.	11.0	172
2	Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Materials Science and Engineering C, 2015, 55, 569-578.	7.3	160
3	Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance. Polymer International, 2016, 65, 988-995.	3.1	100
4	A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for highâ€performance polylactide nanocomposites. Journal of Applied Polymer Science, 2016, 133, .	2.6	76
5	A split Lagrangian-Eulerian method for simulating transient viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics, 1995, 60, 81-104.	2.4	74
6	Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Materials Science and Engineering C, 2016, 61, 180-189.	7.3	74
7	Flow of viscoplastic fluids in eccentric annular geometries. Journal of Non-Newtonian Fluid Mechanics, 1992, 45, 149-169.	2.4	72
8	Transient filament stretching rheometer. Rheologica Acta, 1997, 36, 277-284.	2.4	63
9	Capillary thinning of polymeric filaments. Journal of Rheology, 1999, 43, 609-625.	2.6	56
10	Microthrix parvicella abundance associates with activated sludge settling velocity and rheology – Quantifying and modelling filamentous bulking. Water Research, 2015, 78, 121-132.	11.3	51
11	Effect of Crystallinity on Water Vapor Sorption, Diffusion, and Permeation of PLA-Based Nanocomposites. ACS Omega, 2020, 5, 15362-15369.	3.5	50
12	Chemically extracted nanocellulose from sisal fibres by a simple and industrially relevant process. Cellulose, 2017, 24, 107-118.	4.9	47
13	Start-up of flow of a FENE-fluid through a 4:1:4 constriction in a tube. Journal of Non-Newtonian Fluid Mechanics, 1997, 72, 73-86.	2.4	45
14	Enhancement of dielectric permittivity by incorporating PDMS-PEG multiblock copolymers in silicone elastomers. RSC Advances, 2015, 5, 53054-53062.	3.6	44
15	Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application. Industrial Crops and Products, 2016, 93, 235-243.	5.2	41
16	Constant force extensional rheometry of polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 2012, 169-170, 26-41.	2.4	28
17	Filament stretching rheometer: inertia compensation revisited. Rheologica Acta, 2003, 42, 269-272.	2.4	24
18	Simulation of free surfaces in 3-D with the arbitrary Lagrange-Euler method. International Journal for Numerical Methods in Engineering, 1995, 38, 717-734.	2.8	23

#	Article	IF	Citations
19	Topology optimization of viscoelastic rectifiers. Applied Physics Letters, 2012, 100, .	3.3	23
20	Effect of deletion of chitin synthase genes on mycelial morphology and culture viscosity in Aspergillus oryzae. Biotechnology and Bioengineering, 2003, 81, 525-534.	3.3	18
21	Poly(vinylimidazole-co-butyl acrylate) membranes for CO2 separation. Polymer, 2019, 160, 223-230.	3.8	18
22	Stress–strain behavior in uniaxial compression of polymer gel beads. Journal of Applied Polymer Science, 2006, 102, 3037-3047.	2.6	17
23	Experimental characterisation of a novel viscoelastic rectifier design. Biomicrofluidics, 2012, 6, 44112.	2.4	17
24	Modeling of pressure effects in HVDC cables. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6, 845-851.	2.9	11
25	Experimental and numerical analysis of droplet deformation in a complex flow generated by a rotor–stator device. Chemical Engineering Science, 2008, 63, 3526-3536.	3.8	10
26	Properties of slurries made of fast pyrolysis oil and char or beech wood. Biomass and Bioenergy, 2014, 61, 227-235.	5.7	9
27	Optimization of bistable viscoelastic systems. Structural and Multidisciplinary Optimization, 2014, 49, 733-742.	3.5	6
28	Dynamic in situ chromosome immobilisation and DNA extraction using localized poly(N-isopropylacrylamide) phase transition. Biomicrofluidics, 2011, 5, 031101.	2.4	4
29	Molecular model for solubility of gases in flexible polymers. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 701-706.	2.1	2
30	MODELING HEAT EFFICIENCY, FLOW AND SCALE-UP IN THE COROTATING DISC SCRAPED SURFACE HEAT EXCHANGER. Journal of Food Process Engineering, 2002, 25, 285-305.	2.9	1
31	Hard-soft thiol-ene materials without interfacial weakness. Materials Today Communications, 2019, 21, 100657.	1.9	1