

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7608562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improvement of electrical characteristics of InGaZnO thin film transistors by using HMDSO/O2 plasma deposited SiOCH buffer layer. Current Applied Physics, 2021, 21, 170-174.	2.4	3
2	The Effect of Sampling Interval and Various Difference Approximation Methods on Extracting the Subthreshold Swing in InGaZnO Thin Film Transistor. IEEE Access, 2021, 9, 86677-86684.	4.2	0
3	The exploration of acceptor ratio in thermally activated delayed fluorescent donor for the effect on exciplex OLED. Optical Materials, 2021, 112, 110779.	3.6	6
4	Efficient triplet harvest for orange-red and white OLEDs based exciplex host with different donor/acceptor ratios. Optical Materials, 2021, 113, 110907.	3.6	3
5	Improved light coupling efficiency of organic light-emitting diode and polymer optical waveguide integrated device by grating coupler. Optoelectronics Letters, 2021, 17, 598-603.	0.8	0
6	Improved efficiency, stable spectra and low efficiency roll-off achieved simultaneously in white phosphorescent organic light-emitting diodes by strategic exciton management. Organic Electronics, 2021, 97, 106262.	2.6	3
7	Steep Subthreshold Swing and Enhanced Illumination Stability InGaZnO Thin-Film Transistor by Plasma Oxidation on Silicon Nitride Gate Dielectric. Membranes, 2021, 11, 902.	3.0	3
8	Synthesis and optoelectronic properties of spirofluorenexanthene-based carbazole host materials. New Journal of Chemistry, 2020, 44, 13439-13445.	2.8	4
9	Desert Seismic Data Denoising Based on Gaussian Conditional Random Field With Sparsity Measurement. IEEE Geoscience and Remote Sensing Letters, 2020, , 1-5.	3.1	2
10	Carrier transport manipulation for efficiency enhancement in blue phosphorescent organic light-emitting devices with a 4,4′-bis(<i>N</i> -carbazolyl)-2,2′-biphenyl host. Journal of Materials Chemistry C, 2019, 7, 9301-9307.	5.5	8
11	Low-Temperature, High-Performance InGaZnO Thin-Film Transistors Fabricated by Capacitive Coupled Plasma-Assistant Magnetron Sputtering. IEEE Electron Device Letters, 2019, 40, 415-418.	3.9	20
12	Reduced Efficiency Roll-Off in White Phosphorescent Organic Light-Emitting Diodes Based on Double Emission Layers. Molecules, 2019, 24, 211.	3.8	0
13	High-Efficiency Blue Phosphorescent Organic Light-Emitting Devices with Low Efficiency Roll-Off at Ultrahigh Luminance by the Reduction of Triplet-Polaron Quenching. ACS Applied Materials & Interfaces, 2019, 11, 6292-6301.	8.0	19
14	Low-temperature remote plasma enhanced atomic layer deposition of ZrO2/zircone nanolaminate film for efficient encapsulation of flexible organic light-emitting diodes. Scientific Reports, 2017, 7, 40061.	3.3	47
15	Buffer-modified n/p-type and p/n-type planar organic heterojunctions as charge generation layers for high performance tandem organic light-emitting diodes. Synthetic Metals, 2017, 228, 45-51.	3.9	5
16	Non-Doped Deep Blue and Doped White Electroluminescence Devices Based on Phenanthroimidazole Derivative. Journal of Fluorescence, 2017, 27, 451-461.	2.5	12
17	High-performance tandem organic light-emitting diodes based on a buffer-modified p/n-type planar organic heterojunction as charge generation layer. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	6
18	A Yellow-Emitting Homoleptic Iridium(III) Complex Constructed from a Multifunctional Spiro Ligand for Highly Efficient Phosphorescent Organic Light-Emitting Diodes. Inorganic Chemistry, 2017, 56, 8397-8407.	4.0	23

Υι Ζήλο

#	Article	IF	CITATIONS
19	Selective Introduction of Carbazole and Diphenylamine into Spirofluorenexanthene Core for Different Phosphorescent Hosts. Chinese Journal of Chemistry, 2016, 34, 771-777.	4.9	2
20	A Bulky Pyridinyl?uorene/Triphenylamine Hybrid Used as Host Material for Heavilyâ€Doped Blue Electrophosphorescent Devices. Chinese Journal of Chemistry, 2016, 34, 397-402.	4.9	1
21	Dramatic efficiency improvement in single-layer orange phosphorescent organic light-emitting devices with suppressed efficiency roll-off. RSC Advances, 2016, 6, 55017-55021.	3.6	6
22	Efficient white organic light-emitting devices based on a novel phosphine oxide host with low driving voltage and excellent color stability. Synthetic Metals, 2016, 217, 210-215.	3.9	4
23	High Performance Topâ€Emitting Organic Lightâ€Emitting Diodes for Super Video Graphics Array Monochromatic Microdisplays Application. Chinese Journal of Chemistry, 2015, 33, 897-901.	4.9	3
24	Carbazoleâ€endcapped Spiro[fluoreneâ€9,9′â€xanthene] with Large Steric Hindrance as Holeâ€transporting Host for Heavilyâ€doped and High Performance OLEDs. Chinese Journal of Chemistry, 2015, 33, 955-960.	4.9	12
25	Tuning peripheral group density in ternary phosphine oxide hosts for low-voltage-driven yellow PhOLEDs. Journal of Materials Chemistry C, 2015, 3, 6709-6716.	5.5	8
26	Improved performance for white phosphorescent organic light-emitting diodes utilizing an orange ultrathin non-doped emission layer. RSC Advances, 2015, 5, 39097-39102.	3.6	10
27	Effect of hole mobilities through the emissive layer on space charge limited currents of phosphorescent organic light-emitting diodes. Optical and Quantum Electronics, 2015, 47, 375-385.	3.3	3
28	Highly efficient orange and white phosphorescent organic light-emitting devices with simplified structure. Organic Electronics, 2015, 26, 225-229.	2.6	10
29	High-performance flexible Ag nanowire electrode with low-temperature atomic-layer-deposition fabrication of conductive-bridging ZnO film. Nanoscale Research Letters, 2015, 10, 90.	5.7	26
30	Spiro[fluorene-9,9′-xanthene]-based universal hosts for understanding structure–property relationships in RGB and white PhOLEDs. RSC Advances, 2015, 5, 29828-29836.	3.6	17
31	Deep blue organic light-emitting devices enabled by bipolar phenanthro[9,10-d]imidazole derivatives. RSC Advances, 2015, 5, 72009-72018.	3.6	40
32	Nondoped deep-blue spirofluorenexanthene-based green organic semiconductors (GOS) via a pot, atom and step economic (PASE) route combining direct arylation with tandem reaction. Journal of Materials Chemistry C, 2015, 3, 94-99.	5.5	22
33	Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer. Journal of Applied Physics, 2014, 115, 114504.	2.5	11
34	Optical simulation and optimization of weak-microcavity tandem white organic light-emitting diodes. Journal of Applied Physics, 2014, 116, 153102.	2.5	11
35	Observation of hole injection boost via two parallel paths in Pentacene thin-film transistors by employing Pentacene: 4, 4″-tris(3-methylphenylphenylamino) triphenylamine: MoO ₃ buffer layer. APL Materials, 2014, 2, 116103.	5.1	4
36	Selectively Investigating Molecular Configuration Effect on Blue Electrophosphorescent Host Performance through a Series of Hydrocarbon Oligomers. Journal of Physical Chemistry C, 2014, 118, 20559-20570.	3.1	20

Υι Ζηαο

#	Article	IF	CITATIONS
37	Highly efficient and color-stable white organic light-emitting diode based on a novel blue phosphorescent host. Synthetic Metals, 2014, 187, 160-164.	3.9	2
38	Modulation of singlet and triplet excited states through $\ddot{l}f$ spacers in ternary 1,3,5-triazines. RSC Advances, 2013, 3, 13782.	3.6	6
39	Convergent Modulation of Singlet and Triplet Excited States of Phosphineâ€Oxide Hosts through the Management of Molecular Structure and Functionalâ€Group Linkages for Lowâ€Voltageâ€Driven Electrophosphorescence. Chemistry - A European Journal, 2013, 19, 141-154.	3.3	36
40	Elevating the Triplet Energy Levels of Dibenzofuranâ€Based Ambipolar Phosphine Oxide Hosts for Ultralowâ€Voltageâ€Driven Efficient Blue Electrophosphorescence: From DA to DπA Systems. Chemistry - A European Journal, 2013, 19, 1385-1396.	3.3	30
41	Hybrid white organic light-emitting diodes with improved color stability and negligible efficiency roll-off based on blue fluorescence and yellow phosphorescence. Journal of Luminescence, 2013, 137, 59-63.	3.1	28
42	Improved power efficiency of blue fluorescent organic light-emitting diode with intermixed host structure. Journal of Luminescence, 2013, 143, 619-622.	3.1	5
43	Color-stable and efficient tandem white organic light-emitting devices using a LiF n-doping layer and a MoO x p-doping layer as charge generating unit. Thin Solid Films, 2013, 545, 419-423.	1.8	4
44	Color stable multilayer all-phosphor white organic light-emitting diodes with excellent color quality. Organic Electronics, 2013, 14, 2014-2022.	2.6	30
45	Pure red emission hybrid light-emitting devices based on the blend of CdSe/ZnS quantum dots and an n-type polymer. Thin Solid Films, 2012, 520, 7153-7156.	1.8	3
46	Controllably Tuning Excitedâ€State Energy in Ternary Hosts for Ultralowâ€Voltageâ€Driven Blue Electrophosphorescence. Angewandte Chemie - International Edition, 2012, 51, 10104-10108.	13.8	118
47	Color stable and low driving voltage white organic light-emitting diodes with low efficiency roll-off achieved by selective hole transport buffer layers. Organic Electronics, 2012, 13, 2296-2300.	2.6	7
48	Tailoring the Efficiencies and Spectra of White Organic Light-Emitting Diodes with the Interlayers. Journal of Physical Chemistry C, 2011, 115, 264-269.	3.1	17
49	A Single Phosphine Oxide Host for Highâ€Efficiency White Organic Lightâ€Emitting Diodes with Extremely Low Operating Voltages and Reduced Efficiency Rollâ€Off. Advanced Materials, 2011, 23, 2491-2496.	21.0	112
50	A New Phosphine Oxide Host based on <i>ortho</i> â€Disubstituted Dibenzofuran for Efficient Electrophosphorescence: Towards High Triplet State Excited Levels and Excellent Thermal, Morphological and Efficiency Stability. Chemistry - A European Journal, 2011, 17, 8947-8956.	3.3	60
51	Combination of heterojunction and mixed-host structures in one blue fluorescent organic light emitting diode to improve the power efficiency. Thin Solid Films, 2011, 519, 3816-3818.	1.8	9
52	White phosphorescent polymer light-emitting devices based on a wide band-gap polymer derived from 3,6-carbazole and tetraphenylsilane. Organic Electronics, 2010, 11, 498-502.	2.6	18
53	Highly efficient white polymer light-emitting devices based on wide bandgap polymer doped with blue and yellow phosphorescent dyes. Optics Letters, 2010, 35, 2436.	3.3	14
54	Enhanced hole injection in organic light-emitting devices by using Fe3O4 as an anodic buffer layer. Applied Physics Letters, 2009, 94, 223306.	3.3	46

Υι Ζηαο

#	Article	IF	CITATIONS
55	Influence of interlayer on the performance of stacked white organic light-emitting devices. Applied Physics Letters, 2009, 95, .	3.3	26
56	Small-molecular white organic light-emitting devices employing 2, 5, 2′, 5′-tetra (p-trifluoromethylstyryl)-biphenyl as single-emitting component. Optical and Quantum Electronics, 2008, 40, 57-63.	3.3	2
57	Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoOxâ€^p-doping layer. Applied Physics Letters, 2008, 92, .	3.3	73
58	Color-stable and efficient stacked white organic light-emitting devices comprising blue fluorescent and orange phosphorescent emissive units. Applied Physics Letters, 2008, 93, 153508.	3.3	49
59	Effect of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline outcoupling layer on electroluminescent performances in top-emitting organic light-emitting devices. Journal of Applied Physics, 2008, 103, 054506.	2.5	15
60	White organic light-emitting devices with a bipolar transport layer between blue fluorescent and orange phosphorescent emitting layers. Applied Physics Letters, 2007, 91, 023505.	3.3	74
61	White organic light-emitting devices with a phosphorescent multiple emissive layer. Applied Physics Letters, 2006, 89, 043504.	3.3	65
62	High-performance blue electroluminescence devices based on distyrylbenzene derivatives. Applied Physics Letters, 2006, 88, 263503.	3.3	30
63	Efficient blue organic light-emitting devices based on oligo(phenylenevinylene). Applied Physics Letters, 2006, 88, 223508.	3.3	7
64	Improved efficiency for white organic light-emitting devices based on phosphor sensitized fluorescence. Applied Physics Letters, 2006, 88, 083512.	3.3	39
65	Tunable electroluminescent color for 2, 5-diphenyl -1, 4-distyrylbenzene with two trans-double bonds. Applied Physics Letters, 2005, 87, 013506.	3.3	19
66	Efficient pure blue electroluminescence from ter(9,9, 9″,9″-bihexyl-9′,9′-diphenyl)-fluorenes. Applied Physics Letters, 2005, 87, 151905.	3.3	13
67	Organic pure-blue-light-emitting devices based on terfluorenes compounds. Applied Physics Letters, 2005, 87, 241112.	3.3	26
68	White organic light-emitting devices using 2,5,2′,5′-tetrakis(4′-biphenylenevinyl)-biphenyl as blue light-emitting layer. Applied Physics Letters, 2004, 84, 4457-4459.	3.3	35
69	Highly efficient electrophosphorescence devices based on rhenium complexes. Applied Physics Letters, 2004, 84, 148-150.	3.3	66
70	White-electrophosphorescence devices based on rhenium complexes. Applied Physics Letters, 2003, 83, 4716-4718.	3.3	76