Jana Zdarova Karasova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7608340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel D2/5-HT receptor modulators related to cariprazine with potential implication to schizophrenia treatment. European Journal of Medicinal Chemistry, 2022, 232, 114193.	2.6	5
2	A systematic evaluation of the cucurbit[7]uril pharmacokinetics and toxicity after a single dose and short-term repeated administration in mice. Archives of Toxicology, 2022, 96, 1411-1421.	1.9	4
3	Toxicity, pharmacokinetics, and effectiveness of the ortho-chlorinated bispyridinium oxime, K870. Food and Chemical Toxicology, 2022, 167, 113236.	1.8	1
4	Tacrine and its 7-methoxy derivate; time-change concentration in plasma and brain tissue and basic toxicological profile in rats. Drug and Chemical Toxicology, 2021, 44, 207-214.	1.2	6
5	Development of versatile and potent monoquaternary reactivators of acetylcholinesterase. Archives of Toxicology, 2021, 95, 985-1001.	1.9	7
6	Determination of K869, a Novel Oxime Reactivator of Acetylcholinesterase, in Rat Body Fluids and Tissues by Liquid-Chromatography Methods: Pharmacokinetic Study. Journal of Pharmaceutical Sciences, 2021, 110, 1842-1852.	1.6	5
7	The Impact of Dextran Sodium Sulfate-Induced Gastrointestinal Injury on the Pharmacokinetic Parameters of Donepezil and Its Active Metabolite 6-O-desmethyldonepezil, and Gastric Myoelectric Activity in Experimental Pigs. Molecules, 2021, 26, 2160.	1.7	6
8	3â€Quinuclidinyl benzilate (agent BZ) toxicokinetics in rats. Basic and Clinical Pharmacology and Toxicology, 2021, 129, 246-255.	1.2	2
9	Dextran Sodium Sulphate-Induced Gastrointestinal Injury Further Aggravates the Impact of Galantamine on the Gastric Myoelectric Activity in Experimental Pigs. Pharmaceuticals, 2021, 14, 590.	1.7	2
10	Structure-activity relationships of dually-acting acetylcholinesterase inhibitors derived from tacrine on N-methyl-d-Aspartate receptors. European Journal of Medicinal Chemistry, 2021, 219, 113434.	2.6	9
11	Memantine and Its Combination with Acetylcholinesterase Inhibitors in Pharmacological Pretreatment of Soman Poisoning in Mice. Neurotoxicity Research, 2021, 39, 1487-1494.	1.3	3
12	Pyridostigmine bromide and its relation to Gulf War illness. Toxin Reviews, 2020, 39, 138-146.	1.5	2
13	Encapsulation of oxime K027 into cucurbit[7]uril: In vivo evaluation of safety, absorption, brain distribution and reactivation effectiveness. Toxicology Letters, 2020, 320, 64-72.	0.4	10
14	Simple validated method of LC–MS/MS determination of BZ agent in rat plasma samples. Drug Testing and Analysis, 2020, 12, 431-438.	1.6	4
15	In vitro and in vivo metabolism of 3-quinuclidinyl benzilate by high-resolution mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2020, 190, 113519.	1.4	3
16	Interaction of Cucurbit[7]uril with Oxime K027, Atropine, and Paraoxon: Risky or Advantageous Delivery System?. International Journal of Molecular Sciences, 2020, 21, 7883.	1.8	8
17	The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. PLoS ONE, 2020, 15, e0227781.	1.1	7
18	Donepezil and Rivastigmine: Pharmacokinetic Profile and Brain-targeting After Intramuscular Administration in Rats. Iranian Journal of Pharmaceutical Research, 2020, 19, 95-102.	0.3	4

#	Article	IF	CITATIONS
19	The Concentration of Memantine in the Cerebrospinal Fluid of Alzheimer's Disease Patients and Its Consequence to Oxidative Stress Biomarkers. Frontiers in Pharmacology, 2019, 10, 943.	1.6	13
20	Novel tacrine-tryptophan hybrids: Multi-target directed ligands as potential treatment for Alzheimer's disease. European Journal of Medicinal Chemistry, 2019, 168, 491-514.	2.6	75
21	Determination of Hypericin in <i>Hypericum perforatum</i> (St. John's Wort) Using Classical C18 and Pentafluorophenyl Stationary Phases: Contribution of Pi–Pi Interactions to High-Performance Liquid Chromatography (HPLC). Analytical Letters, 2019, 52, 1788-1812.	1.0	6
22	Characterization of the Penetration of the Blood–Brain Barrier by High-Performance Liquid Chromatography (HPLC) Using a Stationary Phase with an Immobilized Artificial Membrane. Analytical Letters, 2018, 51, 2401-2414.	1.0	6
23	The New Acetylcholinesterase Inhibitors <scp>PC</scp> â€37 and <scp>PC</scp> â€48 (7â€Methoxytacrineâ€Donepezilâ€Like Compounds): Characterization of Their Metabolites in Human Liver Microsomes, Pharmacokinetics and <i>In Vivo</i> Formation of the Major Metabolites in Rats. Basic and Clinical Pharmacology and Toxicology. 2018. 122. 373-382.	1.2	10
24	Development of small bisquaternary cholinesterase inhibitors as drugs for pre-treatment of nerve agent poisonings. Drug Design, Development and Therapy, 2018, Volume 12, 505-512.	2.0	4
25	1-Benzyl-4-methylpiperidinyl moiety in donepezil: The priority ticket across the blood-brain-barrier in rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1092, 350-358.	1.2	5
26	A comparison of neuroprotective efficacy of two novel reactivators of acetylcholinesterase called K920 and K923 with the oxime K203 and trimedoxime in tabun-poisoned rats. Toxicology Mechanisms and Methods, 2017, 27, 236-243.	1.3	1
27	Activity of cholinesterases in a young and healthy middle-European population: Relevance for toxicology, pharmacology and clinical praxis. Toxicology Letters, 2017, 277, 24-31.	0.4	20
28	Pharmacokinetic profile of promising acetylcholinesterase reactivators K027 and K203 in experimental pigs. Toxicology Letters, 2017, 273, 20-25.	0.4	15
29	Concentration of Donepezil in the Cerebrospinal Fluid of AD Patients: Evaluation of Dosage Sufficiency in Standard Treatment Strategy. Neurotoxicity Research, 2017, 31, 162-168.	1.3	23
30	The Evaluation of the Reactivating and Neuroprotective Efficacy of Two Newly Prepared Bispyridinium Oximes (K305, K307) in Tabun-Poisoned Rats—A Comparison with Trimedoxime and the Oxime K203. Molecules, 2017, 22, 1152.	1.7	8
31	Toxic EfÂfects of Pesticides. Ceska A Slovenska Neurologie A Neurochirurgie, 2017, 80/113, 164-171.	0.0	1
32	Small Quaternary Inhibitors K298 and K524: Cholinesterases Inhibition, Absorption, Brain Distribution, and Toxicity. Neurotoxicity Research, 2016, 29, 267-274.	1.3	9
33	An HPLC–MS method for the quantification of new acetylcholinesterase inhibitor PC 48 (7-MEOTA-donepezil like compound) in rat plasma: Application to a pharmacokinetic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1020, 85-89.	1.2	7
34	Translation of in vitro to in vivo pyridinium oxime potential in tabun poisoning / Translacija uÄinkovitosti piridinijevih oksima kod trovanja tabunom iz in vitro sustava u in vivo primjenu. Arhiv Za Higijenu Rada I Toksikologiju, 2015, 66, 291-298.	0.4	21
35	Neuroprotective efficacy of newly developed oximes in comparison with currently available oximes in tabun-poisoned rats. Journal of Applied Biomedicine, 2015, 13, 39-46.	0.6	5
36	The Evaluation of the Potency of Newly Developed Oximes (K727, K733) and Trimedoxime to Counteract Acute Neurotoxic Effects of Tabun in Rats. Acta Medica (Hradec Kralove), 2015, 58, 135-143.	0.2	1

#	Article	IF	CITATIONS
37	Entry of oxime K027 into the different parts of rat brain: Comparison with obidoxime and oxime HI-6. Journal of Applied Biomedicine, 2014, 12, 25-29.	0.6	7
38	Comparison of the neuroprotective effects of a novel bispyridinium oxime KR-22934 with the oxime K203 and obidoxime in tabun-poisoned male rats. Journal of Applied Biomedicine, 2014, 12, 111-117.	0.6	6
39	A comparison of the reactivating efficacy of a novel bispyridinium oxime K203 with currently available oximes in VX agent-poisoned rats. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 753-757.	2.5	3
40	Pharmacokinetic study of two acetylcholinesterase reactivators, trimedoxime and newly synthesized oxime K027, in rat plasma. Journal of Applied Toxicology, 2013, 33, 18-23.	1.4	27
41	Therapeutic efficacy of a novel bispyridinium oxime K2O3 and commonly used oximes (HI-6, obidoxime,) Tj ETQq1 7-13.	1 0.78431 0.6	l 4 rgBT /Ove 7
42	Hyaluronidase: Its effects on HI-6 dichloride and dimethanesulphonate pharmacokinetic profile in pigs. Toxicology Letters, 2013, 220, 167-171.	0.4	6
43	Time-Dependent Changes of Oxime K027 Concentrations in Different Parts of Rat Central Nervous System. Neurotoxicity Research, 2013, 23, 63-68.	1.3	21
44	Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study. International Journal of Molecular Sciences, 2013, 14, 16882-16900.	1.8	38
45	Prophylaxis and Post-exposure Treatment of Intoxications Caused by Nerve Agents and Organophosphorus Pesticides. Mini-Reviews in Medicinal Chemistry, 2013, 13, 2102-2115.	1.1	24
46	A Resurrection of 7-MEOTA: A Comparison with Tacrine. Current Alzheimer Research, 2013, 10, 893-906.	0.7	92
47	SCREENING OF BLOOD-BRAIN BARRIER PENETRATION USING THE IMMOBILIZED ARTIFICIAL MEMBRANE PHOSPHATIDYLCHOLINE COLUMN CHROMATOGRAPHY AT THE PHYSIOLOGICAL PH. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 2013, 82, 55-62.	0.2	1
48	TRANSDERMAL PENETRATION OF THE ACETYLCHOLINESTERASE REACTIVATOR HI-6 IN A RAT MODEL. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 2013, 82, 185-188.	0.2	1
49	Intravenous application of HI-6 salts (dichloride and dimethansulphonate) in pigs: comparison with pharmacokinetics profile after intramuscular administration. Neuroendocrinology Letters, 2013, 34 Suppl 2, 74-8.	0.2	0
50	Combined approach to demonstrate acetylcholinesterase activity changes in the rat brain following tabun intoxication and its treatment. Toxicology Mechanisms and Methods, 2012, 22, 60-66.	1.3	6
51	Two Possibilities How to Increase the Efficacy of Antidotal Treatment of Nerve agent Poisonings. Mini-Reviews in Medicinal Chemistry, 2012, 12, 24-34.	1.1	18
52	Pharmacokinetics of acetylcholinesterase reactivator K2O3 and consequent evaluation of low molecular weight antioxidants/markers of oxidative stress. Journal of Applied Biomedicine, 2012, 10, 71-78.	0.6	14
53	A Comparison of the Potency of a Novel Bispyridinium Oxime K203 and currently available Oximes (Obidoxime, HI-6) to Counteract the Acute Neurotoxicity of Sarin in Rats. Basic and Clinical Pharmacology and Toxicology, 2012, 111, n/a-n/a.	1.2	8
54	The Ability of Oxime Mixtures to Increase the Reactivating and Therapeutic Efficacy of Antidotal Treatment of Cyclosarin Poisoning in Rats and Mice. Acta Medica (Hradec Kralove), 2012, 55, 27-31.	0.2	4

#	Article	IF	CITATIONS
55	Changes of rat plasma total low molecular weight antioxidant level after tabun exposure and consequent treatment by acetylcholinesterase reactivators. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 93-97.	2.5	11
56	Inhibition of blood and tissue cholinesterases by soman in guinea pigs in vivo. Journal of Applied Biomedicine, 2011, 9, 35-41.	0.6	1
57	A comparison of the reactivating and therapeutic efficacy of the newly developed bispyridinium oxime K2O3 with currently available oximes, in sarin poisoned rats and mice. Journal of Applied Biomedicine, 2011, 9, 225-230.	0.6	11
58	Square wave voltammetry on screen printed electrodes: comparison to ferric reducing antioxidant power in plasma from model laboratory animal (Grey Partridge) and comparison to standard antioxidants. Journal of Applied Biomedicine, 2011, 9, 103-109.	0.6	12
59	A comparison of reactivating and therapeutic efficacy of bispyridinium acetylcholinesterase reactivator KR-22934 with the oxime K203 and commonly used oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice. Toxicology Mechanisms and Methods, 2011, 21, 241-245.	1.3	2
60	The Benefit of Combinations of Oximes for the Reactivating and Therapeutic Efficacy of Antidotal Treatment of Sarin Poisoning in Rats and Mice. Basic and Clinical Pharmacology and Toxicology, 2011, 109, 30-34.	1.2	9
61	A Comparison of the Reactivating and Therapeutic Efficacy of Chosen Combinations of Oximes With Individual Oximes Against VX in Rats and Mice. International Journal of Toxicology, 2011, 30, 562-567.	0.6	8
62	Partition of bispyridinium oximes (trimedoxime and K074) administered in therapeutic doses into different parts of the rat brain. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 1082-1087.	1.4	26
63	A comparison of the neuroprotective efficacy of individual oxime (HI-6) and combinations of oximes (HI-6+trimedoxime, HI-6+K203) in soman-poisoned rats. Drug and Chemical Toxicology, 2011, 34, 233-239.	1.2	11
64	OXIMES AS INHIBITORS OF ACETYLHOLINESTERASE - A STRUCTURE-ACTIVITY RELATIONSHIP (SAR) STUDY. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 2011, 80, 178-186.	0.2	2
65	A COMPARISON OF THE NEUROPROTECTIVE EFFICACY OF INDIVIDUAL OXIMES (HI-6, TRIMEDOXIME, K203) AND THEIR MIXTURES (HI-6 + TRIMEDOXIME, HI-6 + K203) IN CYCLOSARIN-POISONED RATS. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 2011, 80, 12-20.	0.2	0
66	METHOD OPTIMIZATION FOR ACETYLCHOLINESTERASE MODULATORS-ALBUMIN INTERACTIONS. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 2011, 80, 58-64.	0.2	0
67	HUMAN SERUM BUTYRYLCHOLINESTERASE AS A PROPHYLAXIS AGAINST RUSSIAN VX. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 2011, 80, 97-102.	0.2	0
68	The influence of combinations of oximes on the reactivating and therapeutic efficacy of antidotal treatment of tabun poisoning in rats and mice. Journal of Applied Toxicology, 2010, 30, 120-124.	1.4	20
69	Time-dependent Changes in Concentration of Two Clinically used Acetylcholinesterase Reactivators (HI-6 and Obidoxime) in Rat Plasma Determined by HPLC Techniques after in vivo Administration. Analytical Sciences, 2010, 26, 63-67.	0.8	22
70	Tabun-inhibited rat tissue and blood cholinesterases and their reactivation with the combination of trimedoxime and HI-6 in vivo. Chemico-Biological Interactions, 2010, 187, 287-290.	1.7	9
71	A Comparison of Neuroprotective Efficacy of the Oxime K203 and its Fluorinated Analogue (KRâ€⊋2836) with Obidoxime in Tabunâ€Poisoned Rats. Basic and Clinical Pharmacology and Toxicology, 2010, 107, 861-867.	1.2	7
72	A comparison of reactivating and therapeutic efficacy of the oxime K203 and its fluorinated analog (KR-22836) with currently available oximes (obidoxime, trimedoxime, HI-6) against tabun in rats and mice. Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25, 480-484.	2.5	12

#	Article	IF	CITATIONS
73	A comparison of the ability of newly-developed bispyridinium oxime K2O3 and currently available oximes (trimedoxime, obidoxime, HI-6) to counteract the acute neurotoxicity of soman in rats. Toxicology Mechanisms and Methods, 2010, 20, 445-451.	1.3	5
74	A comparison of the reactivating and therapeutic efficacy of newly developed oximes (K347, K628) with commonly used oximes (obidoxime, HI-6) against tabun in rats and mice. Drug and Chemical Toxicology, 2010, 33, 227-232.	1.2	4
75	Colorimetric dipstick for assay of organophosphate pesticides and nerve agents represented by paraoxon, sarin and VX. Talanta, 2010, 81, 621-624.	2.9	70
76	Passive diffusion of acetylcholinesterase oxime reactivators through the blood–brain barrier: Influence of molecular structure. Toxicology in Vitro, 2010, 24, 1838-1844.	1.1	36
77	In vitro screening of blood-brain barrier penetration of clinically used acetylcholinesterase reactivators. Journal of Applied Biomedicine, 2010, 8, 35-40.	0.6	22
78	Development of promising oximes against nerve agent and/or pesticide intoxication. Main Group Chemistry, 2010, 9, 355-361.	0.4	3
79	In Vitro Screening of Blood-Brain Barrier Penetration of Monoquaternary Acetylcholinesterase Reactivators. Analytical Letters, 2010, 43, 1516-1524.	1.0	8
80	Potency of HI-6 to Reactivate Cyclosarin, Soman and Tabun Inhibited Acetylcholinesterase – In Vivo Study. Letters in Drug Design and Discovery, 2010, 7, 516-520.	0.4	4
81	A Comparison of the Potency of Newly Developed Oximes (K347, K628) and Currently Available Oximes (Obidoxime, HI-6) to Counteract Acute Neurotoxic Effects of Tabun in Rats. Acta Medica (Hradec) Tj ETQq1 1 0.7	78 4 324 rgl	3T¢Overloc <mark>k</mark>
82	A Comparison of neuroprotective efficacy of newly developed oximes (K203, K206) and commonly used oximes (obidoxime, HI-6) in tabun-poisoned rats. Drug and Chemical Toxicology, 2009, 32, 128-138.	1.2	19
83	Effect of Seven Newly Synthesized and Currently Available Oxime Cholinesterase Reactivators on Cyclosarin-Intoxicated Rats. International Journal of Molecular Sciences, 2009, 10, 3065-3075.	1.8	12
84	Effect of five acetylcholinesterase reactivators on tabunâ€intoxicated rats: induction of oxidative stress versus reactivation efficacy. Journal of Applied Toxicology, 2009, 29, 483-488.	1.4	17
85	Methylacridinium and its Cholinergic Properties. Neurotoxicity Research, 2009, 16, 372-377.	1.3	6
86	Time-Course Changes of Acetylcholinesterase Activity in Blood and Some Tissues in Rats After Intoxication by Russian VX. Neurotoxicity Research, 2009, 16, 356-360.	1.3	16
87	Evaluation of the Neuroprotective Efficacy of Newly Developed Oximes (K206, K269) and Currently Available Oximes (Obidoxime, HIâ€6) in Cyclosarinâ€Poisoned Rats. Basic and Clinical Pharmacology and Toxicology, 2009, 104, 228-235.	1.2	3
88	A comparison of reactivating and therapeutic efficacy of newly-developed oximes (K156, K2O3) and commonly used oximes (obidoxime, HI-6) in cyclosarin-poisoned rats and mice. Toxicology Mechanisms and Methods, 2009, 19, 346-350.	1.3	10
89	A comparison of the neuroprotective efficacy of newly developed oximes (K117, K127) and currently available oxime (obidoxime) in tabun-poisoned rats. Toxicology Mechanisms and Methods, 2009, 19, 232-238.	1.3	4
90	The influence of combinations of oximes on the reactivating and therapeutic efficacy of antidotal treatment of soman poisoning in rats and mice. Toxicology Mechanisms and Methods, 2009, 19, 547-551.	1.3	10

JANA ZDAROVA KARASOVA

#	Article	IF	CITATIONS
91	Novel Bisquaternary Oximes—Reactivation of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Paraoxon. Molecules, 2009, 14, 4915-4921.	1.7	17
92	Is a high dose of Huperzine A really suitable for pretreatment against high doses of soman?. Journal of Applied Biomedicine, 2009, 7, 93-99.	0.6	12
93	Could oxime HI-6 really be considered as "broad-spectrum" antidote?. Journal of Applied Biomedicine, 2009, 7, 143-149.	0.6	28
94	An evaluation of therapeutic and reactivating effects of newly developed oximes (K156, K2O3) and commonly used oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice. Toxicology, 2008, 243, 311-316.	2.0	77
95	A Comparison of the Therapeutic and Reactivating Efficacy of Newly Developed Oximes (K117, K127) and Currently Available Oximes (Obidoxime, Trimedoxime, HI-6) in Tabun-Poisoned Rats and Mice. Drug and Chemical Toxicology, 2008, 31, 371-381.	1.2	7
96	The Development of New Oximes and the Evaluation of their Reactivating, Therapeutic and Neuroprotective Efficacy Against Tabun. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1134-1143.	1.1	30
97	The present approaches to the development of prophylactic and therapeutic antidotes against nerve agents. Interdisciplinary Toxicology, 2008, 1, 18-21.	1.0	7
98	Effect of Several New and Currently Available Oxime Cholinesterase Reactivators on Tabun-intoxicated Rats. International Journal of Molecular Sciences, 2008, 9, 2243-2252.	1.8	16
99	A Comparison of the Neuroprotective Efficacy of Newly Developed Oximes (K156, K2O3) and Currently Available Oximes (Obidoxime, HI-6) in Cyclosarin-poisoned Rats. Acta Medica (Hradec Kralove), 2008, 51, 215-221.	0.2	4