Xiaona Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7608269/publications.pdf Version: 2024-02-01

XIAONALI

#	Article	IF	CITATIONS
1	Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Materialia, 2018, 147, 213-225.	7.9	252
2	A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties. Scripta Materialia, 2016, 120, 85-89.	5.2	130
3	Coherent Precipitation and Strengthening in Compositionally Complex Alloys: A Review. Entropy, 2018, 20, 878.	2.2	100
4	Selective detection of nanomolar Cr(<scp>vi</scp>) in aqueous solution based on 1,4-dithiothreitol functionalized gold nanoparticles. Analytical Methods, 2011, 3, 343-347.	2.7	50
5	The lattice distortion of β-Ga2O3 film grown on c-plane sapphire. Journal of Materials Science: Materials in Electronics, 2015, 26, 3231-3235.	2.2	47
6	Cu–Ni–Sn–Si alloys designed by cluster-plus-glue-atom model. Materials and Design, 2019, 167, 107641.	7.0	42
7	Cuboidal γ' phase coherent precipitation-strengthened Cu–Ni–Al alloys with high softening temperature. Acta Materialia, 2021, 203, 116458.	7.9	41
8	Ultrasound-promoted two-step synthesis of 3-arylselenylindoles and 3-arylthioindoles as novel combretastatin A-4 analogues. Scientific Reports, 2016, 6, 23986.	3.3	33
9	Differential effects of Zn and Co solutes on the properties of Cu–Ni–Sn alloys. Intermetallics, 2020, 125, 106894.	3.9	24
10	The resistivity–temperature behavior of Al CoCrFeNi high-entropy alloy films. Thin Solid Films, 2020, 700, 137895.	1.8	23
11	Surface nanostructure of a directionally solidified Ni-based superalloy DZ4 induced by high intensity pulsed ion beam irradiation. Applied Surface Science, 2012, 258, 8061-8064.	6.1	22
12	Barrierless Cu-Ni-Mo Interconnect Films with High Thermal Stability Against Silicide Formation. Journal of Electronic Materials, 2012, 41, 3447-3452.	2.2	22
13	Damage induced by helium ion irradiation in Fe-based metallic glass. Journal of Nuclear Materials, 2017, 490, 216-225.	2.7	19
14	Water Splitting via Decoupled Photocatalytic Water Oxidation and Electrochemical Proton Reduction Mediated by Electron oupledâ€Proton Buffer. Chemistry - an Asian Journal, 2017, 12, 2666-2669.	3.3	19
15	Serum levels of perfluorinated compounds in the general population in Shenzhen, China. Science Bulletin, 2011, 56, 3092-3099.	1.7	18
16	High thermal stability and low electrical resistivity carbon-containing Cu film on barrierless Si. Applied Physics Letters, 2010, 96, 182105.	3.3	16
17	Abnormal Oxidation of Ag Films and Its Application to Fabrication of Photocatalytic Films with <i>a</i> -TiO ₂ / <i>h</i> -Ag ₂ O Heterostructure. Journal of Physical Chemistry C, 2017, 121, 9901-9909.	3.1	16
18	Compositional interpretation of high elasticity Cu–Ni–Sn alloys using cluster-plus-glue-atom model. Journal of Materials Research and Technology, 2022, 17, 1246-1258.	5.8	16

Xiaona Li

#	Article	IF	CITATIONS
19	Microstructures and Stability Origins of β-(Ti,Zr)-(Mo,Sn)-Nb Alloys with Low Young's Modulus. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3924-3931.	2.2	15
20	Comparative studies on microstructures and properties of Cu–Ni–M alloys controlled by strong interaction between elements. Journal of Alloys and Compounds, 2019, 805, 404-414.	5.5	13
21	Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding. Materials, 2015, 8, 424-434.	2.9	12
22	Electrical resistivity interpretation of ternary Cu–Ni–Mo alloys using a cluster-based short-range-order structural model. Journal Physics D: Applied Physics, 2016, 49, 035306.	2.8	12
23	Structural Stability of the Metastable β-[(Mo0.5Sn0.5)-(Ti13Zr1)]Nb1 Alloy with Low Young's Modulus at Different States. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3912-3919.	2.2	12
24	Weak enthalpy-interaction-element-modulated NbMoTaW high-entropy alloy thin films. Applied Surface Science, 2021, 565, 150462.	6.1	12
25	Bright luminescence in amorphous hydrogenated silicon-nitride quantum-dot films prepared by a special designed PECVD system. Journal of Luminescence, 2016, 175, 67-70.	3.1	11
26	Thermal stability of barrierless Cu–Ni–Sn films. Applied Surface Science, 2014, 297, 89-94.	6.1	10
27	Effect of dual local structures of amorphous Fe–Si films on the performance of anode of lithium-ion batteries. Materials Chemistry and Physics, 2020, 243, 122666.	4.0	10
28	Performance and local structure evolution of NbMoTaWV entropy-stabilized oxide thin films with variable oxygen content. Surface and Coatings Technology, 2020, 402, 126326.	4.8	10
29	Enthalpic interaction promotes the stability of high elastic Cu-Ni-Sn alloys. Journal of Alloys and Compounds, 2022, 896, 163068.	5.5	10
30	Carbon-doped Cu films with self-forming passivation layer. Surface and Coatings Technology, 2014, 244, 9-14.	4.8	9
31	Automated Chemical <scp>Solidâ€Phase</scp> Synthesis of Glycans. Chinese Journal of Chemistry, 2022, 40, 1714-1728.	4.9	8
32	An effective scheduling scheme for CoMP in heterogeneous scenario. , 2012, , .		7
33	A Generic Mathematical Model Based on Fuzzy Set Theory for Frequency Reuse in Cellular Networks. IEEE Journal on Selected Areas in Communications, 2013, 31, 861-869.	14.0	7
34	Composition range of semiconducting amorphous Fe-Si thin films interpreted using a cluster-based short-range-order model. Journal of Alloys and Compounds, 2017, 706, 495-501.	5.5	7
35	Formation of hierarchical porosity in oxidation of Ag films by reactive sputtering deposition of metal oxides <i>via</i> the Kirkendall effect. Nanoscale, 2019, 11, 10034-10044.	5.6	7
36	Study on thermal shock irradiation resistance of CoCrFeMnNi high entropy alloy by high intensity pulsed ion beam. Journal of Nuclear Materials, 2022, 559, 153413.	2.7	7

Xiaona Li

#	Article	IF	CITATIONS
37	Application of cluster-plus-glue-atom model to barrierless Cu–Ni–Ti and Cu–Ni–Ta films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	2.1	6
38	Enhanced thermal stability of Cu alloy films by strong interaction between Ni and Zr (or Fe). Journal Physics D: Applied Physics, 2018, 51, 135304.	2.8	6
39	Hierarchically structured AgO films with nano-porosity for photocatalyst and all solid-state thin film battery. Journal of Alloys and Compounds, 2019, 802, 210-216.	5.5	6
40	Preparation of amorphous FexSi(1â^'x) film using unbalanced magnetron sputtering. Thin Solid Films, 2010, 518, 7390-7393.	1.8	5
41	Addition of strong interaction element Fe(or Sn) to improve the stability of solid solution Cu(Ge) film. Surface and Coatings Technology, 2017, 321, 328-335.	4.8	5
42	Precipitation evolution in Cu [Ni3Cr1] spinodal alloys under mismatch control. Materials Chemistry and Physics, 2019, 223, 486-493.	4.0	5
43	The Effect of Arc Current on the Microstructure and Wear Characteristics of Stellite12 Coatings Deposited by PTA on Duplex Stainless Steel. Materials Transactions, 2013, 54, 1851-1856.	1.2	4
44	Ni-V(or Cr) Co-addition Cu alloy films with high stability and low resistivity. Materials Chemistry and Physics, 2018, 205, 253-260.	4.0	4
45	Quantitative Correlation between Electrical Resistivity and Microhardness of Cu-Ni-Mo Alloys via a Short-Range Order Cluster Model. Journal of Electronic Materials, 2019, 48, 312-320.	2.2	4
46	Study on the damage of Fe80B13Si7 alloy with different structure by high-intensity pulsed ion beam irradiation. Surface and Coatings Technology, 2020, 395, 125933.	4.8	4
47	Preparation and characterization of CuN-based ternary alloy films using Cr or Zr for stabilizing N. Journal of Materials Research, 2017, 32, 1333-1342.	2.6	3
48	Effects of distribution and growth orientation of precipitates on oxidation resistance of Cu–Cu ₁₂ –[Cr _{<i>x</i>/(12+<i>x</i>)} Ni _{12/(12+<i>x</i>)}] _{5alloys. Journal of Materials Research, 2015, 30, 3299-3306.})>2.6	2
49	Microstructure evolution and strengthening mechanism of Cu <i>_x</i> [Ni ₃ Mo] alloys. Materials Science and Technology, 2019, 35, 98-106.	1.6	2
50	Fused Line Study of 17-4PH Stainless Steel Deposited with Co-Based Alloy. Materials Transactions, 2013, 54, 2162-2165.	1.2	1
51	Interpretation of Specific Strength-Over-Resistivity Ratio in Cu Alloys. Materials, 2021, 14, 7150.	2.9	1
52	A novel optical Ethernet network analyzer transmitting self-similar traffic. , 2007, , .		0
53	Effects of adding elements M (M = C, B, Mn, Al and Al + Co) on stability of amorphous semicon Fe–Si films. Journal of Materials Science: Materials in Electronics, 2018, 29, 10550-10560.	ducting	0
54	Synergistic reinforcement of Cu–Ni–Al films with dual nanostructure. Surface Engineering, 2021, 37, 795-807.	2.2	0