
Hein J Wijma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7608218/publications.pdf Version: 2024-02-01

HEIN I WUMA

#	Article	IF	CITATIONS
1	Stabilizing AqdC, a Pseudomonas Quinolone Signalâ€Cleaving Dioxygenase from Mycobacteria, by FRESCOâ€Based Protein Engineering. ChemBioChem, 2021, 22, 733-742.	1.3	7
2	Thermodynamics Determine the Diastereochemical Outcome of Catalytic Reactions. ChemCatChem, 2021, 13, 2530-2536.	1.8	7
3	Catalytic and structural properties of <scp>ATP</scp> â€dependent caprolactamase from <i>Pseudomonas jessenii</i> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1079-1098.	1.5	6
4	Computational Redesign of an ω-Transaminase from <i>Pseudomonas jessenii</i> for Asymmetric Synthesis of Enantiopure Bulky Amines. ACS Catalysis, 2021, 11, 10733-10747.	5.5	28
5	Computational Prediction of ω-Transaminase Specificity by a Combination of Docking and Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2021, 61, 5569-5580.	2.5	17
6	Asymmetric Synthesis of Optically Pure Aliphatic Amines with an Engineered Robust ω-Transaminase. Catalysts, 2020, 10, 1310.	1.6	10
7	Computational Design of Enantiocomplementary Epoxide Hydrolases for Asymmetric Synthesis of Aliphatic and Aromatic Diols. ChemBioChem, 2020, 21, 1893-1904.	1.3	15
8	Computational redesign of enzymes for regio- and enantioselective hydroamination. Nature Chemical Biology, 2018, 14, 664-670.	3.9	137
9	A robust cosolvent-compatible halohydrin dehalogenase by computational library design. Protein Engineering, Design and Selection, 2017, 30, 173-187.	1.0	23
10	Real-Time Conformational Changes and Controlled Orientation of Native Proteins Inside a Protein Nanoreactor. Journal of the American Chemical Society, 2017, 139, 18640-18646.	6.6	83
11	Versatile Peptide C-Terminal Functionalization via a Computationally Engineered Peptide Amidase. ACS Catalysis, 2016, 6, 5405-5414.	5.5	60
12	Exploring the gating mechanisms of aquaporin-3: new clues for the design of inhibitors?. Molecular BioSystems, 2016, 12, 1564-1573.	2.9	32
13	Metabolism of β-valine via a CoA-dependent ammonia lyase pathway. Applied Microbiology and Biotechnology, 2015, 99, 8987-8998.	1.7	2
14	Enantioselective Enzymes by Computational Design and In Silico Screening. Angewandte Chemie - International Edition, 2015, 54, 3726-3730.	7.2	119
15	X-ray crystallographic validation of structure predictions used in computational design for protein stabilization. Proteins: Structure, Function and Bioinformatics, 2015, 83, 940-951.	1.5	17
16	Computationally designed libraries for rapid enzyme stabilization. Protein Engineering, Design and Selection, 2014, 27, 49-58.	1.0	205
17	Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue. FEBS Open Bio, 2014, 4, 168-174.	1.0	59
18	Computational Library Design for Increasing Haloalkane Dehalogenase Stability. ChemBioChem, 2014, 15, 1660-1672.	1.3	68

Hein J Wijma

#	Article	IF	CITATIONS
19	Computationally Efficient and Accurate Enantioselectivity Modeling by Clusters of Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2014, 54, 2079-2092.	2.5	44
20	Computational design gains momentum in enzyme catalysis engineering. FEBS Journal, 2013, 280, 2948-2960.	2.2	58
21	Biocatalytic and Structural Properties of a Highly Engineered Halohydrin Dehalogenase. ChemBioChem, 2013, 14, 870-881.	1.3	44
22	Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Current Opinion in Structural Biology, 2013, 23, 588-594.	2.6	161
23	Biochemical Properties and Crystal Structure of a β-Phenylalanine Aminotransferase from Variovorax paradoxus. Applied and Environmental Microbiology, 2013, 79, 185-195.	1.4	29
24	Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B. Applied Microbiology and Biotechnology, 2012, 95, 389-403.	1.7	20
25	Directed Evolution Strategies for Enantiocomplementary Haloalkane Dehalogenases: From Chemical Waste to Enantiopure Building Blocks. ChemBioChem, 2012, 13, 137-148.	1.3	55
26	Aminoacyl-coenzyme A synthesis catalyzed by a CoA ligase from <i>Penicillium chrysogenum</i> . FEBS Letters, 2011, 585, 893-898.	1.3	8
27	Kinetic Resolution of αâ€Bromoamides: Experimental and Theoretical Investigation of Highly Enantioselective Reactions Catalyzed by Haloalkane Dehalogenases. Advanced Synthesis and Catalysis, 2011, 353, 931-944.	2.1	35
28	Engineering of an enantioselective tyrosine aminomutase by mutation of a single active site residue in phenylalanine aminomutase. Chemical Communications, 2010, 46, 8157.	2.2	23
29	Protein Film Voltammetry of Copper-Containing Nitrite Reductase Reveals Reversible Inactivation. Journal of the American Chemical Society, 2007, 129, 8557-8565.	6.6	45
30	Effect of the Methionine Ligand on the Reorganization Energy of the Type-1 Copper Site of Nitrite Reductase. Journal of the American Chemical Society, 2007, 129, 519-525.	6.6	25
31	Thermal stability effects of removing the type-2 copper ligand His306 at the interface of nitrite reductase subunits. European Biophysics Journal, 2007, 36, 805-813.	1.2	3
32	A Rearranging Ligand Enables Allosteric Control of Catalytic Activity in Copper-containing Nitrite Reductase. Journal of Molecular Biology, 2006, 358, 1081-1093.	2.0	12
33	A Random-sequential Mechanism for Nitrite Binding and Active Site Reduction in Copper-containing Nitrite Reductase*. Journal of Biological Chemistry, 2006, 281, 16340-16346.	1.6	72
34	Calorimetric and spectroscopic investigations of the thermal denaturation of wild type nitrite reductase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1752, 47-55.	1.1	19
35	Sensing Nitrite through a Pseudoazurin-Nitrite Reductase Electron Transfer Relay. ChemPhysChem, 2005, 6, 1114-1120.	1.0	29
36	The Substrate-Bound Type 2 Copper Site of Nitrite Reductase:Â The Nitrogen Hyperfine Coupling of Nitrite Revealed by Pulsed EPRâ€. Biochemistry, 2005, 44, 15193-15202.	1.2	15

Hein J Wijma

#	Article	IF	CITATIONS
37	A Systematic Study of the Influence of Peptide Modification of a Gold Electrode on the Cyclic Voltammetry of Pseudoazurin fromAlcaligenes faecalis Strain S-6. Electroanalysis, 2004, 16, 1155-1165.	1.5	7
38	Bidirectional Catalysis by Copper-Containing Nitrite Reductaseâ€. Biochemistry, 2004, 43, 10467-10474.	1.2	59
39	Reconstitution of the Type-1 Active Site of the H145G/A Variants of Nitrite Reductase by Ligand Insertionâ€. Biochemistry, 2003, 42, 4075-4083.	1.2	37