
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7608181/publications.pdf Version: 2024-02-01

INDOSÅ NU SOTOR

#	Article	IF	CITATIONS
1	Graphene Oxide vs Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Optics Express, 2012, 20, 19463.	3.4	388
2	Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Optics Letters, 2015, 40, 3885.	3.3	344
3	Black phosphorus saturable absorber for ultrashort pulse generation. Applied Physics Letters, 2015, 107, .	3.3	288
4	Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb_2Te_3 saturable absorber. Optical Materials Express, 2014, 4, 1.	3.0	228
5	Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator. Optics Express, 2014, 22, 13244.	3.4	168
6	Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator. Applied Physics Letters, 2014, 104, .	3.3	164
7	Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz. Applied Physics Letters, 2012, 100, .	3.3	147
8	Harmonically mode-locked Er-doped fiber laser based on a Sb ₂ Te ₃ topological insulator saturable absorber. Laser Physics Letters, 2014, 11, 055102.	1.4	131
9	Fundamental and harmonic mode-locking at 21 μm with black phosphorus saturable absorber. Optics Express, 2017, 25, 16916.	3.4	114
10	Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber. Optics Express, 2013, 21, 12797.	3.4	113
11	All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber. Laser Physics Letters, 2012, 9, 581-586.	1.4	111
12	Sub-90 fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber. Optics Express, 2015, 23, 27503.	3.4	91
13	Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers. Optical Materials Express, 2015, 5, 2884.	3.0	87
14	Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber. Optics Letters, 2018, 43, 38.	3.3	87
15	Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er:Yb laser. Optics Letters, 2016, 41, 4995.	3.3	80
16	All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser. Optics Express, 2015, 23, 9339.	3.4	77
17	Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb_2Te_3 topological insulator. Optics Letters, 2015, 40, 2786.	3.3	74
18	All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber. Optics Letters, 2016, 41, 2592.	3.3	73

#	Article	IF	CITATIONS
19	Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser. Optics Express, 2016, 24, 6156.	3.4	73
20	Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber. Applied Physics Letters, 2012, 101, .	3.3	72
21	Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber. Optics Express, 2014, 22, 5536.	3.4	70
22	Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb_2Te_3 saturable absorber. Optics Express, 2015, 23, 29014.	3.4	68
23	All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber. Optics Letters, 2017, 42, 1592.	3.3	67
24	Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber. Optics Express, 2013, 21, 18994.	3.4	65
25	Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb ₂ Te ₃ topological insulator. Laser Physics, 2014, 24, 105111.	1.2	63
26	Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers. Photonics Research, 2015, 3, 119.	7.0	63
27	Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber. Optics Communications, 2012, 285, 3174-3178.	2.1	61
28	Amplification of noise-like pulses generated from a graphene-based Tm-doped all-fiber laser. Optics Express, 2016, 24, 20359.	3.4	60
29	Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser. Optics Letters, 2012, 37, 2166.	3.3	57
30	CNT-based saturable absorbers with scalable modulation depth for Thulium-doped fiber lasers operating at 1.9 μm. Scientific Reports, 2017, 7, 45491.	3.3	56
31	High peak power ultrafast Yb:CaF_2 oscillator pumped by a single-mode fiber-coupled laser diode. Optics Express, 2017, 25, 26289.	3.4	54
32	Sb_2Te_3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers. Optical Materials Express, 2016, 6, 2273.	3.0	52
33	Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers. Optics Express, 2011, 19, 19104.	3.4	49
34	Fabrication and applications of multi-layer graphene stack on transparent polymer. Applied Physics Letters, 2017, 110, .	3.3	46
35	Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber. Laser Physics Letters, 2013, 10, 035104.	1.4	45
36	Er-Doped Fiber Laser Mode-Locked by CVD-Graphene Saturable Absorber. Journal of Lightwave Technology, 2012, 30, 2770-2775.	4.6	44

#	Article	IF	CITATIONS
37	Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm. Optical Materials Express, 2014, 4, 7.	3.0	42
38	Graphene Actively Mode‣ocked Lasers. Advanced Functional Materials, 2018, 28, 1801539.	14.9	39
39	Computational Doppler-limited dual-comb spectroscopy with a free-running all-fiber laser. APL Photonics, 2019, 4, .	5.7	33
40	168 fs pulse generation from graphene-chitosan mode-locked fiber laser. Optical Materials Express, 2014, 4, 1981.	3.0	32
41	Generation of sub-100  fs pulses tunable from 1700 to 2100  nm from a compact frequency-shi laser. Photonics Research, 2017, 5, 151.	fted Er-fib 7.0	er ₃₂
42	All-fiber mid-infrared source tunable from 6 to 9 μm based on difference frequency generation in OP-GaP crystal. Optics Express, 2018, 26, 11756.	3.4	31
43	Synthesis and Characterization of Antimony Telluride for Thermoelectric and Optoelectronic Applications. Archives of Metallurgy and Materials, 2017, 62, 1067-1070.	0.6	30
44	Metallic carbon nanotube-based saturable absorbers for holmium-doped fiber lasers. Optics Express, 2019, 27, 11361.	3.4	30
45	Sub-80  fs mode-locked Tm,Ho-codoped disordered garnet crystal oscillator operating at 2081 Optics Letters, 2018, 43, 5154.	nm. 3.3	29
46	Pulsed dual-stage fiber MOPA source operating at 1550 nm with arbitrarily shaped output pulses. Applied Physics B: Lasers and Optics, 2011, 105, 721-727.	2.2	27
47	All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range. Photonics Research, 2018, 6, 368.	7.0	27
48	Towards an optimum saturable absorber for the multi-gigahertz harmonic mode locking of fiber lasers. Photonics Research, 2019, 7, 1094.	7.0	27
49	Compact all-fiber source of coherent linearly polarized octave-spanning supercontinuum based on normal dispersion silica fiber. Scientific Reports, 2019, 9, 12313.	3.3	26
50	Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser. Optical Materials Express, 2018, 8, 1723.	3.0	24
51	260 fs and 1 nJ pulse generation from a compact, mode-locked Tm-doped fiber laser. Optics Express, 2015, 23, 31446.	3.4	23
52	Single-cycle infrared waveform control. Nature Photonics, 2022, 16, 512-518.	31.4	23
53	Thulium-Doped Silica Fibers with Enhanced Fluorescence Lifetime and Their Application in Ultrafast Fiber Lasers. Fibers, 2018, 6, 66.	4.0	22
54	Stabilized all-fiber source for generation of tunable broadband fCEO-free mid-IR frequency comb in the 7 – 9 µm range. Optics Express, 2019, 27, 37435.	3.4	22

#	Article	IF	CITATIONS
55	24 fs and 3 nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser. Laser Physics Letters, 2016, 13, 125102.	1.4	20
56	All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb ₂ Te ₃ saturable absorber. Optical Engineering, 2016, 55, 081316.	1.0	20
57	Power Scaling of an All-PM Fiber Er-Doped Mode-Locked Laser Based on Graphene Saturable Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 60-65.	2.9	20
58	Wavelength- and dispersion-tunable ultrafast holmium-doped fiber laser with dual-color operation. Optics Letters, 2020, 45, 956.	3.3	19
59	Widely tunable, all-polarization maintaining, monolithic mid-infrared radiation source based on differential frequency generation in PPLN crystal. Laser Physics Letters, 2014, 11, 105103.	1.4	18
60	Mapping Mode-Locking Regimes in a Polarization-Maintaining Er-Doped Fiber Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-9.	2.9	18
61	High-Power Fiber-Based Femtosecond CPA System at 1560 nm. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 492-496.	2.9	17
62	80 fs passively mode-locked Er-doped fiber laser. Laser Physics, 2015, 25, 065104.	1.2	17
63	Dualâ€Comb Femtosecond Solidâ€State Laser with Inherent Polarizationâ€Multiplexing. Laser and Photonics Reviews, 2021, 15, 2000441.	8.7	17
64	59 fs mode-locked Yb:KGW oscillator pumped by a single-mode laser diode. Laser Physics Letters, 2016, 13, 035801.	1.4	16
65	Single-longitudinal mode Nd:YVO4/YVO4/KTP green solid state laser. Opto-electronics Review, 2010, 18,	2.4	15
66	A graphene-based mode-locked nano-engineered zirconia–yttria–aluminosilicate glass-based erbium-doped fiber laser. Laser Physics, 2013, 23, 035110.	1.2	14
67	Fully-integrated dual-wavelength all-fiber source for mode-locked square-shaped mid-IR pulse generation via DFG in PPLN. Optics Express, 2015, 23, 32080.	3.4	14
68	\hat{l} ¹ /4J-level, kHz-repetition rate femtosecond fiber-CPA system at 1555nm. Optics Communications, 2015, 347, 8-12.	2.1	14
69	Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber. Journal of Applied Physics, 2015, 117, 133103.	2.5	13
70	Graphene and SESAM mode-locked Yb:CNGS lasers with self-frequency doubling properties. Optics Express, 2019, 27, 590.	3.4	13
71	Single frequency, monolithic Nd:YVO4/YVO4/KTP diode pumped solid state laser optimization by parasitic oscillations elimination. Optics Communications, 2013, 291, 279-284.	2.1	12
72	Compact, spherical mirror-based dense astigmatic-like pattern multipass cell design aided by a genetic algorithm. Optics Express, 2021, 29, 26127.	3.4	12

#	Article	IF	CITATIONS
73	A tunable, linearly polarized Er-fiber laser mode-locked by graphene/PMMA composite. Laser Physics, 2013, 23, 125101.	1.2	11
74	Broadband infrared supercontinuum generation in a soft-glass photonic crystal fiber pumped with a sub-picosecond Er-doped fiber laser mode-locked by a graphene saturable absorber. Laser Physics, 2013, 23, 105106.	1.2	11
75	Compact mode-locked Er-doped fiber laser for broadband cavity-enhanced spectroscopy. Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	11
76	Er-doped fibre laser mode-locked by mechanically exfoliated graphene saturable absorber. Opto-electronics Review, 2012, 20, .	2.4	10
77	Single-longitudinal mode, monolithic, green solid-state laser. Applied Physics B: Lasers and Optics, 2011, 103, 67-74.	2.2	9
78	Dual-Wavelength Pumped Highly Birefringent Microstructured Silica Fiber for Widely Tunable Soliton Self-Frequency Shift. Journal of Lightwave Technology, 2021, 39, 3260-3268.	4.6	9
79	Ultrabroadband wavelength-swept source based on total mode-locking of an Yb:CaF ₂ laser. Photonics Research, 2019, 7, 182.	7.0	9
80	Recent Advances in Ultrafast Fiber Lasers Mode-locked with Graphenebased Saturable Absorbers. Current Nanoscience, 2016, 12, 291-298.	1.2	9
81	Shot-to-shot performance analysis of an all-fiber supercontinuum source pumped at 2000  nm. Journal of the Optical Society of America B: Optical Physics, 2019, 36, A15.	2.1	9
82	Exploiting nonlinear properties of pure and Sn-doped Bi2Te2Se for passive Q-switching of all-polarization maintaining ytterbium- and erbium-doped fiber lasers. Scientific Reports, 2017, 7, 7428.	3.3	8
83	Self-frequency-doubling Yb:CNGS lasers operating in the femtosecond regime. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2822.	2.1	8
84	Sb ₂ Te ₃ topological insulator based saturable absorber for Er-doped mode-locked fiber lasers. Proceedings of SPIE, 2015, , .	0.8	7
85	Inkjet-printing of graphene saturable absorbers for ~2 μm bulk and waveguide lasers. Optical Materials Express, 2018, 8, 2803.	3.0	7
86	Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating. Laser Physics, 2016, 26, 015106.	1.2	6
87	2 Âμm ultrafast fiber laser modelocked by mechanically exfoliated Sb ₂ Te ₃ . Proceedings of SPIE, 2016, , .	0.8	6
88	Ultrafast Lasers: Graphene Actively Mode-Locked Lasers (Adv. Funct. Mater. 28/2018). Advanced Functional Materials, 2018, 28, 1870194.	14.9	6
89	Emerging two-dimensional materials-enabled diagnosis and treatments of Alzheimer's disease: Status and future challenges. Applied Materials Today, 2021, 23, 101028.	4.3	6
90	Laser wavelength shift and dual-wavelength generation in continuous-wave operation of Ho:YAG laser pumped by thulium-doped fiber laser. Optics and Laser Technology, 2022, 146, 107544.	4.6	6

#	Article	IF	CITATIONS
91	Laser Doppler vibrometry with a single-frequency microchip green laser. Measurement Science and Technology, 2011, 22, 115306.	2.6	5
92	Underwater green laser vibrometry. , 2012, , .		5
93	Numerical simulations of spectral broadening in all-normal dispersion photonic crystal fiber at various pump pulse conditions. Optical Engineering, 2015, 54, 016102.	1.0	5
94	Characterization of holmium fibers with various concentrations for fiber laser applications around 2.1 \hat{l} 4m. , 2016, , .		5
95	Three-stage all-in-fiber MOPA source operating at 1550 nm with 20W output power. , 2012, , .		4
96	A dual-wavelength amplifier that enables the simultaneous chirped-pulse amplification of femtosecond 1562 nm pulses and continuous wave 1064 nm radiation for applications in difference frequency generation. Laser Physics Letters, 2016, 13, 105107.	1.4	4
97	Demodulator electronics for laser vibrometry. , 2012, , .		3
98	Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator. Proceedings of SPIE, 2014, , .	0.8	3
99	Broadband Metallic Carbon Nanotube Saturable Absorber for Ultrashort Pulse Generation in the 1500–2100 nm Spectral Range. Applied Sciences (Switzerland), 2021, 11, 3121.	2.5	3
100	Multipass cells and optical cavities design using ray tracing and genetic algorithm. , 2018, , .		3
101	Compact single-longitudinal mode microchip laser operating at 532 nm. Photonics Letters of Poland, 2014, 6, .	0.4	3
102	Graphene-based, ultrafast Er-doped fiber laser with linearly polarized output pulses. Photonics Letters of Poland, 2014, 6, .	0.4	3
103	Fiber-MOPA sources of coherent radiation. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2010, 58, .	0.8	2
104	Single Frequency Monolithic Solid State Green Laser as a Potential Source for Vibrometry Systems. , 2010, , .		2
105	Multichannel flexible fiber vibrometer. , 2011, , .		2
106	Recent development of WDM fiber vibrometry. , 2012, , .		2
107	0.5W single-longitudinal mode, monolithic Nd:YVO4 microchip laser. , 2013, , .		2
108	Investigation on dispersion regimes in Yb:KGW solid-state laser. Laser Physics Letters, 2018, 15, 065003.	1.4	2

#	Article	IF	CITATIONS
109	Low-Noise Carrier-Envelope-Offset-Stabilized Yb:CaF2 Oscillator. IEEE Photonics Technology Letters, 2020, 32, 823-826.	2.5	2
110	Fast, universal, and fully automatic pulse-picker unit for femtosecond laser systems. , 2018, , .		2
111	High-resolution dual-comb spectroscopy with a free-running all-fiber laser. , 2019, , .		2
112	Fiber Bragg Gratings as References for Frequency Stabilization of Microchip Laser. , 2006, , .		1
113	Blue 473-nm solid state diode pumped Nd:YAG/BiBO microchip laser. Opto-electronics Review, 2010, 18, .	2.4	1
114	Erbium-ytterbium co-doped fiber amplifier with controlled 1060-nm Yb-ASE. , 2012, , .		1
115	Sub-picosecond Graphene-based Harmonically Mode-Locked Fiber Laser With Repetition Rates up to 2.22 GHz. EPJ Web of Conferences, 2013, 41, 10001.	0.3	1
116	Difference frequency generation of Mid-IR radiation in PPLN crystals using a dual-wavelength all-fiber amplifier. Proceedings of SPIE, 2014, , .	0.8	1
117	Dual-wavelength fiber mode-locked laser based on graphene saturable absorber. Proceedings of SPIE, 2014, , .	0.8	1
118	All-normal dispersion Yb-doped fiber laser mode-locked by Sb2Te3topological insulator. , 2016, , .		1
119	Passively Mode-Locked Self-Frequency Doubling Yb:LGSB Laser. , 2019, , .		1
120	Spherical mirrors based compact multipass cell with dense astigmatic-like spot pattern. , 2019, , .		1
121	Stretched-pulse Ho-doped fiber laser mode-locked by graphene based saturable absorber. , 2018, , .		1
122	Dispersion control and wavelength tuning of mode-locked holmium-doped fiber laser. , 2018, , .		1
123	Dual-dispersion-regime dual-comb mode-locked laser. Optics Letters, 2022, 47, 1762.	3.3	1
124	Single Frequency Green Laser with Birefringent Filter. , 2006, , .		0
125	Optical FM Demodulation by Fibre Bragg Grating. , 2007, , .		0
126	Diode Pumped Compact Nd:YAG/BiBO Blue Laser at 473 nm. , 2007, , .		0

Diode Pumped Compact Nd:YAG/BiBO Blue Laser at 473 nm. , 2007, , . 126

8

#	Article	IF	CITATIONS
127	Single frequency solid state laser stabilized by FBG. , 2008, , .		Ο
128	Single frequency, widely tuneable green microchip laser. , 2009, , .		0
129	Elementary experiments in green laser vibrometry. , 2010, , .		0
130	Single frequency monolithic green DPSS laser. , 2010, , .		0
131	WDM—Vibrometry at 1550 nm. , 2010, , .		0
132	Green laser vibrometry based on single-frequency monolithic microchip laser. Proceedings of SPIE, 2011, , .	0.8	0
133	Development and optimization of single-mode green solid state microchip laser. Proceedings of SPIE, 2012, , .	0.8	0
134	Passive harmonic mode-locking in fiber lasers with graphene. , 2013, , .		0
135	Graphene saturable absorber based all-polarization maintaining Er-doped fiber mode-locked laser. , 2013, , .		0
136	Multichannel laser-fiber vibrometer. , 2013, , .		0
137	Femtosecond CPA System operating at 1560 nm Seeded by a Graphene Mode-Locked Fiber Laser. , 2013, , .		0
138	Mid-infrared supercontinuum generation using lead-bismuth-gallium-oxide glass-based photonic crystal fibers pumped at 1560 nm. Proceedings of SPIE, 2014, , .	0.8	0
139	Influence of pump fiber laser conditions at 1550 nm on broadband infrared supercontinuum generation in all-solid all-normal dispersion photonic crystal fibers. Proceedings of SPIE, 2014, , .	0.8	0
140	Graphene oxide paper as a saturable absorber for Er-doped fiber laser. Proceedings of SPIE, 2014, , .	0.8	0
141	Graphene-chitosan self-start ultrafast laser setup. , 2014, , .		0
142	MW-level, kHz-repetition rate femtosecond fiber-CPA system operating at 1555 nm. Proceedings of SPIE, 2015, , .	0.8	0
143	Bound soliton state in all-polarization maintaining fiber laser mode-locked by graphene. , 2016, , .		0
144	An all-PM fiber source generating 5.4 nJ, 95 fs laser pulses in the 2 $\hat{1}$ /4m spectral range. , 2017, , .		0

#	Article	IF	CITATIONS
145	Numerical simulations of sub-100 fs soliton fiber laser mode-locked by graphene. , 2017, , .		Ο
146	Ultrafast Holmium-Doped Fiber Laser with Metallic Carbon Nanotube-Based Saturable Absorbers. , 2019, , .		0
147	Adjustable Optical Path Length Compact Spherical Mirrors Multipass Cell Optimized with Genetic Algorithm. , 2019, , .		0
148	Thermally Stabilized, Energy Efficient, All-Fiber Optical Frequency Comb. , 2019, , .		0
149	Mitigating Supercontinuum Shot-to-Shot Fluctuations in an Anomalous Dispersion Highly Nonlinear Fiber by Length Optimization. , 2019, , .		Ο
150	All-Fiber Source for Generation of Tunable Broadband fCEO-Free Mid-IR Pulses for Laser Spectroscopy Applications. , 2019, , .		0
151	Computational High-Resolution Dual-Comb Spectroscopy with a Free-Running All-Fiber Laser. , 2019, , .		Ο
152	Dualâ€Comb Lasers: Dualâ€Comb Femtosecond Solidâ€State Laser with Inherent Polarizationâ€Multiplexing (Laser Photonics Rev. 15(8)/2021). Laser and Photonics Reviews, 2021, 15, 2170046.	8.7	0
153	Er-doped fiber laser mode-locked by mechanically exfoliated Sb2Te3 saturable absorber. , 2013, , .		Ο
154	Difference frequency generation of mid-IR radiation using novel dual-wavelength all-fiber double-clad Er/Yb doped amplifier. , 2013, , .		0
155	Multilayer Graphene-based Saturable Absorbers With Scalable Modulation Depth for Mode-Locked Fiber Lasers. , 2015, , .		0
156	Dissipative Soliton Generation From a Normal Dispersion, All-Fiber Mode-Locked Tm-doped Laser. , 2016, , .		0
157	Sub-100 fs All-PM Er-doped Soliton Mode-Locked Fiber Oscillator Based on Graphene Saturable Absorber. , 2016, , .		О
158	Ultrafast lasers and their applications. Photonics Letters of Poland, 2016, 8, 94.	0.4	0
159	Mode-locked Yb:KGW solid-state laser operating in dispersion regimes from anomalous to normal. , 2017, , .		Ο
160	Continuously Tunable Dispersion in an All Polarization-maintaining Er-doped Fiber Laser Mode-locked by a Graphene Saturable Absorber. , 2017, , .		0
161	An all-fiber mid-infrared (6 – 9 µm) source based on difference frequency generation in OP-GaP crystal. , 2018, , .		0
162	Generation of sub-100 fs pulses tunable from 1.8 to 2.0 l̂¼m from an All-fiber, All-PM Source Pumped at 1560 nm. , 2018, , .		0

#	Article	IF	CITATIONS
163	Tm:GdVO4 microchip laser Q-switched by a Sb2Te3 topological insulator. , 2018, , .		0
164	Passive mode-locking of the solid state Yb:LPS laser. , 2018, , .		0
165	Ultrafast Ho-doped Fiber Oscillator with Intracavity Dispersion Compressor. , 2019, , .		0
166	Self-referenceable Yb:CaF2 oscillator pumped by a single-mode laser diode. , 2019, , .		0
167	Cost-efficient thermal tuning and stabilization system for fiber-based optical frequency combs. , 2019, , .		Ο
168	Laser and Fiber Electronics Group. Photonics Letters of Poland, 2019, 11, 38.	0.4	0
169	Mid-infrared frequency comb covering the 6.5 – 9 μm range with active output power stabilization. , 2020, , .		Ο
170	Dual-comb Generation from a Simple Single-cavity Mode-locked Bulk Laser. , 2020, , .		0
171	Carrier-envelope-offset-stable Yb:CaF2 laser pumped by a single-mode laser diode. , 2020, , .		0
172	Compact 6.5 - 9 pm Frequency Comb Source for Fourier Transform Spectroscopy. , 2020, , .		0
173	Dual-comb characterization of bound soliton states in a single-cavity dual-comb laser. , 2020, , .		0
174	Wavelength- and dispersion-tunable ultrafast holmium-doped fiber laser with dual-color operation: publisher's note. Optics Letters, 2020, 45, 1280.	3.3	0