
Sergey A Nizkorodov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7607876/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Modeling Reactive Ammonia Uptake by Secondary Organic Aerosol in a Changing Climate: A WRF-CMAQ Evaluation. Frontiers in Environmental Science, 2022, 10, .	1.5	2
2	Effect of aromatic ring substituents on the ability of catechol to produce brown carbon in iron(<scp>iii</scp>)-catalyzed reactions. Environmental Science Atmospheres, 2021, 1, 64-78.	0.9	8
3	Quenching of ketone triplet excited states by atmospheric halides. Environmental Science Atmospheres, 2021, 1, 31-44.	0.9	9
4	Emissions Measurements from Household Solid Fuel Use in Haryana, India: Implications for Climate and Health Co-benefits. Environmental Science & Technology, 2021, 55, 3201-3209.	4.6	8
5	Effect of Ammonium Salts on the Decarboxylation of Oxaloacetic Acid in Atmospheric Particles. ACS Earth and Space Chemistry, 2021, 5, 931-940.	1.2	2
6	High Pressure Inside Nanometer-Sized Particles Influences the Rate and Products of Chemical Reactions. Environmental Science & amp; Technology, 2021, 55, 7786-7793.	4.6	12
7	Naphthaleneâ€Derived Secondary Organic Aerosols Interfacial Photosensitizing Properties. Geophysical Research Letters, 2021, 48, e2021GL093465.	1.5	6
8	Stability of α-Pinene and <scp>d</scp> -Limonene Ozonolysis Secondary Organic Aerosol Compounds Toward Hydrolysis and Hydration. ACS Earth and Space Chemistry, 2021, 5, 2555-2564.	1.2	12
9	Humidity-Dependent Viscosity of Secondary Organic Aerosol from Ozonolysis of \hat{l}^2 -Caryophyllene: Measurements, Predictions, and Implications. ACS Earth and Space Chemistry, 2021, 5, 305-318.	1.2	32
10	Viscosity and liquid–liquid phase separation in healthy and stressed plant SOA. Environmental Science Atmospheres, 2021, 1, 140-153.	0.9	14
11	Superoxide Formation from Aqueous Reactions of Biogenic Secondary Organic Aerosols. Environmental Science & Technology, 2021, 55, 260-270.	4.6	35
12	Photochemical Degradation of 4-Nitrocatechol and 2,4-Dinitrophenol in a Sugar-Glass Secondary Organic Aerosol Surrogate. Environmental Science & Technology, 2021, 55, 14586-14594.	4.6	16
13	Global Distribution of the Phase State and Mixing Times within Secondary Organic Aerosol Particles in the Troposphere Based on Room-Temperature Viscosity Measurements. ACS Earth and Space Chemistry, 2021, 5, 3458-3473.	1.2	14
14	Effect of Humidity on the Reactive Uptake of Ammonia and Dimethylamine by Nitrogen-Containing Secondary Organic Aerosol. Atmosphere, 2021, 12, 1502.	1.0	3
15	Open questions on transition metals driving secondary thermal processes in atmospheric aerosols. Communications Chemistry, 2021, 4, .	2.0	9
16	Dust-Catalyzed Oxidative Polymerization of Catechol and Its Impacts on Ice Nucleation Efficiency and Optical Properties. ACS Earth and Space Chemistry, 2020, 4, 1127-1139.	1.2	22
17	Composition and volatility of secondary organic aerosol (SOA) formed from oxidation of real tree emissions compared to simplified volatile organic compound (VOC) systems. Atmospheric Chemistry and Physics, 2020, 20, 5629-5644.	1.9	31
18	Photodegradation of Secondary Organic Aerosols by Long-Term Exposure to Solar Actinic Radiation. ACS Earth and Space Chemistry, 2020, 4, 1078-1089.	1.2	17

#	Article	IF	CITATIONS
19	UVB-irradiated Laboratory-generated Secondary Organic Aerosol Extracts Have Increased Cloud Condensation Nuclei Abilities: Comparison with Dissolved Organic Matter and Implications for the Photomineralization Mechanism. Chimia, 2020, 74, 142.	0.3	4
20	Atmospheric Photosensitization: A New Pathway for Sulfate Formation. Environmental Science & Technology, 2020, 54, 3114-3120.	4.6	65
21	Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol. Atmospheric Chemistry and Physics, 2020, 20, 1105-1129.	1.9	115
22	Reactive Oxygen Species Production from Secondary Organic Aerosols: The Importance of Singlet Oxygen. Environmental Science & Technology, 2019, 53, 8553-8562.	4.6	36
23	Chemical characterization of nanoparticles and volatiles present in mainstream hookah smoke. Aerosol Science and Technology, 2019, 53, 1023-1039.	1.5	8
24	Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene in the Presence of Hydrogen Peroxide or Inorganic Salts. ACS Earth and Space Chemistry, 2019, 3, 2736-2746.	1.2	18
25	Insights into the O : C-dependent mechanisms controlling the evaporation of <i>α</i> -pinene secondary organic aerosol particles. Atmospheric Chemistry and Physics, 2019, 19, 4061-4073.	1.9	23
26	Impacts of household sources on air pollution at village and regional scales in India. Atmospheric Chemistry and Physics, 2019, 19, 7719-7742.	1.9	30
27	Formation of Light-Absorbing Organosulfates during Evaporation of Secondary Organic Material Extracts in the Presence of Sulfuric Acid. ACS Earth and Space Chemistry, 2019, 3, 947-957.	1.2	38
28	Effect of Oxalate and Sulfate on Iron-Catalyzed Secondary Brown Carbon Formation. Environmental Science & Technology, 2019, 53, 6708-6717.	4.6	19
29	Viscosities, diffusion coefficients, and mixing times of intrinsic fluorescent organic molecules in brown limonene secondary organic aerosol and tests of the Stokes–Einstein equation. Atmospheric Chemistry and Physics, 2019, 19, 1491-1503.	1.9	24
30	Nitrogen-containing secondary organic aerosol formation by acrolein reaction with ammonia/ammonium. Atmospheric Chemistry and Physics, 2019, 19, 1343-1356.	1.9	21
31	Liquid–liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors. Atmospheric Chemistry and Physics, 2019, 19, 12515-12529.	1.9	27
32	Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene. Atmospheric Chemistry and Physics, 2018, 18, 1643-1652.	1.9	64
33	Modeling reactive ammonia uptake by secondary organic aerosol in CMAQ: application to the continental US. Atmospheric Chemistry and Physics, 2018, 18, 3641-3657.	1.9	21
34	Effect of Photolysis on Absorption and Fluorescence Spectra of Light-Absorbing Secondary Organic Aerosols. ACS Earth and Space Chemistry, 2018, 2, 235-245.	1.2	47
35	Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India. Atmospheric Chemistry and Physics, 2018, 18, 2461-2480.	1.9	69
36	Mass Spectrometry Analysis in Atmospheric Chemistry. Analytical Chemistry, 2018, 90, 166-189.	3.2	87

#	Article	IF	CITATIONS
37	Editors' Perspective on Multiphase Chemistry in the Atmosphere. ACS Symposium Series, 2018, , 1-6.	0.5	0
38	Influence of humidity and iron(<scp>iii</scp>) on photodegradation of atmospheric secondary organic aerosol particles. Physical Chemistry Chemical Physics, 2018, 20, 30021-30031.	1.3	9
39	Reactive Uptake of Ammonia by Biogenic and Anthropogenic Organic Aerosols. ACS Symposium Series, 2018, , 127-147.	0.5	6
40	Molecular Characterization of Atmospheric Brown Carbon. ACS Symposium Series, 2018, , 261-274.	0.5	14
41	Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure Photoionization. Analytical Chemistry, 2018, 90, 12493-12502.	3.2	148
42	Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition. Atmospheric Chemistry and Physics, 2018, 18, 6331-6351.	1.9	116
43	Emissions from village cookstoves in Haryana, India, and their potential impacts on air quality. Atmospheric Chemistry and Physics, 2018, 18, 15169-15182.	1.9	33
44	Adjacent keto and enol groups in photochemistry of a cyclic molecule: Products, mechanisms and dynamics. Chemical Physics, 2018, 515, 177-186.	0.9	3
45	Photodegradation of Secondary Organic Aerosol Material Quantified with a Quartz Crystal Microbalance. Environmental Science and Technology Letters, 2018, 5, 366-371.	3.9	22
46	Heating-Induced Transformations of Atmospheric Particles: Environmental Transmission Electron Microscopy Study. Analytical Chemistry, 2018, 90, 9761-9768.	3.2	7
47	Reactive uptake of ammonia by secondary organic aerosols: Implications for air quality. Atmospheric Environment, 2018, 189, 1-8.	1.9	14
48	Online single particle measurement of fireworks pollution during Chinese New Year in Nanning. Journal of Environmental Sciences, 2017, 53, 184-195.	3.2	41
49	Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene Oxidized with Ozone, Hydroxyl Radical, and Nitrate Radical. Journal of Physical Chemistry A, 2017, 121, 1298-1309.	1.1	51
50	The Essential Role for Laboratory Studies in Atmospheric Chemistry. Environmental Science & Technology, 2017, 51, 2519-2528.	4.6	75
51	Feasibility of Photosensitized Reactions with Secondary Organic Aerosol Particles in the Presence of Volatile Organic Compounds. Journal of Physical Chemistry A, 2017, 121, 4961-4967.	1.1	18
52	Molecular Characterization of Organosulfur Compounds in Biodiesel and Diesel Fuel Secondary Organic Aerosol. Environmental Science & Technology, 2017, 51, 119-127.	4.6	74
53	Photochemistry of Products of the Aqueous Reaction of Methylglyoxal with Ammonium Sulfate. ACS Earth and Space Chemistry, 2017, 1, 522-532.	1.2	55
54	A Role for 2-Methyl Pyrrole in the Browning of 4-Oxopentanal and Limonene Secondary Organic Aerosol. Environmental Science & Technology, 2017, 51, 11048-11056.	4.6	17

#	Article	IF	CITATIONS
55	Efficient Formation of Light-Absorbing Polymeric Nanoparticles from the Reaction of Soluble Fe(III) with C4 and C6 Dicarboxylic Acids. Environmental Science & Technology, 2017, 51, 9700-9708.	4.6	21
56	Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event. Environmental Science & Technology, 2017, 51, 11561-11570.	4.6	215
57	Plant-derived Secondary Organic Material in the Air and Ecosystems. Trends in Plant Science, 2017, 22, 744-753.	4.3	39
58	Secondary organic aerosol from atmospheric photooxidationÂofÂindole. Atmospheric Chemistry and Physics, 2017, 17, 11605-11621.	1.9	21
59	Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles. Environmental Science & Technology, 2016, 50, 11815-11824.	4.6	237
60	Photodegradation of Secondary Organic Aerosol Particles as a Source of Small, Oxygenated Volatile Organic Compounds. Environmental Science & Technology, 2016, 50, 9990-9997.	4.6	63
61	Photochemical Reactions of Cyclohexanone: Mechanisms and Dynamics. Journal of Physical Chemistry A, 2016, 120, 7112-7120.	1.1	17
62	Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai. Atmospheric Chemistry and Physics, 2016, 16, 5399-5411.	1.9	82
63	Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols. Atmospheric Environment, 2016, 130, 172-179.	1.9	42
64	Effect of viscosity on photodegradation rates in complex secondary organic aerosol materials. Physical Chemistry Chemical Physics, 2016, 18, 8785-8793.	1.3	76
65	Formation of Light Absorbing Soluble Secondary Organics and Insoluble Polymeric Particles from the Dark Reaction of Catechol and Guaiacol with Fe(III). Environmental Science & Technology, 2015, 49, 7793-7801.	4.6	58
66	Heterogeneous Photochemistry in the Atmosphere. Chemical Reviews, 2015, 115, 4218-4258.	23.0	497
67	Absorption spectra and aqueous photochemistry of β-hydroxyalkyl nitrates of atmospheric interest. Molecular Physics, 2015, 113, 2179-2190.	0.8	22
68	High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols. Journal of Physical Chemistry A, 2015, 119, 2594-2606.	1.1	63
69	On Surface Order and Disorder of α-Pinene-Derived Secondary Organic Material. Journal of Physical Chemistry A, 2015, 119, 4609-4617.	1.1	27
70	Chemistry of Atmospheric Brown Carbon. Chemical Reviews, 2015, 115, 4335-4382.	23.0	1,121
71	Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry. Environmental Science & amp; Technology, 2015, 49, 13304-13313.	4.6	30
72	A Real-Time Fast-Flow Tube Study of VOC and Particulate Emissions from Electronic, Potentially Reduced-Harm, Conventional, and Reference Cigarettes. Aerosol Science and Technology, 2015, 49, 816-827.	1.5	26

#	Article	IF	CITATIONS
73	Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate. Environmental Science & Technology, 2015, 49, 14257-14266.	4.6	149
74	Effect of Alkyl Chain Length on Hygroscopicity of Nanoparticles and Thin Films of Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 29458-29466.	1.5	14
75	Molecular Selectivity of Brown Carbon Chromophores. Environmental Science & Technology, 2014, 48, 12047-12055.	4.6	94
76	Photochemistry of aldehyde clusters: cross-molecular versus unimolecular reaction dynamics. Physical Chemistry Chemical Physics, 2014, 16, 23861-23868.	1.3	21
77	Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia. Physical Chemistry Chemical Physics, 2014, 16, 10629-10642.	1.3	98
78	Exploring matrix effects on photochemistry of organic aerosols. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13780-13785.	3.3	62
79	Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon. Environmental Science & Technology, 2014, 48, 10217-10226.	4.6	250
80	Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry. Environmental Science & Technology, 2014, 48, 10993-11001.	4.6	138
81	Direct Photolysis of α-Pinene Ozonolysis Secondary Organic Aerosol: Effect on Particle Mass and Peroxide Content. Environmental Science & Technology, 2014, 48, 11251-11258.	4.6	105
82	Physical properties of ambient and laboratoryâ€generated secondary organic aerosol. Geophysical Research Letters, 2014, 41, 4347-4353.	1.5	53
83	Bitz, Ginoux, Jacobson, Nizkorodov, and Yang Receive 2013 Atmospheric Sciences Ascent Awards: Response. Eos, 2014, 95, 266-266.	0.1	0
84	An approach toward quantification of organic compounds in complex environmental samples using high-resolution electrospray ionization mass spectrometry. Analytical Methods, 2013, 5, 72-80.	1.3	24
85	Excitation–Emission Spectra and Fluorescence Quantum Yields for Fresh and Aged Biogenic Secondary Organic Aerosols. Environmental Science & Technology, 2013, 47, 5763-5770.	4.6	119
86	Brown carbon formation from ketoaldehydes of biogenic monoterpenes. Faraday Discussions, 2013, 165, 473.	1.6	89
87	Probing molecular associations of fieldâ€collected and laboratoryâ€generated SOA with nanoâ€DESI highâ€resolution mass spectrometry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1042-1051.	1.2	19
88	Experimental and Theoretical Study of Aqueous <i>cis</i> -Pinonic Acid Photolysis. Journal of Physical Chemistry A, 2013, 117, 12930-12945.	1.1	60
89	New mass spectrometry techniques for studying physical chemistry of atmospheric heterogeneous processes. International Reviews in Physical Chemistry, 2013, 32, 128-170.	0.9	41
90	Direct photolysis of carbonyl compounds dissolved in cloud and fog~droplets. Atmospheric Chemistry and Physics, 2013, 13, 9461-9477.	1.9	44

#	Article	IF	CITATIONS
91	Enhancement of Surfactants in Nanoparticles Produced by an Electrospray Aerosol Generator. Aerosol Science and Technology, 2012, 46, 1239-1245.	1.5	5
92	A comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase. Atmospheric Chemistry and Physics, 2012, 12, 8205-8222.	1.9	34
93	Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors. Atmospheric Environment, 2012, 63, 22-31.	1.9	349
94	Direct aqueous photochemistry of isoprene high-NOx secondary organic aerosol. Physical Chemistry Chemical Physics, 2012, 14, 9702.	1.3	38
95	Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols. Environmental Science & Technology, 2012, 46, 8315-8324.	4.6	44
96	COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols. Environmental Science & amp; Technology, 2012, 46, 6048-6055.	4.6	8
97	Interaction of Water Vapor with the Surfaces of Imidazolium-Based Ionic Liquid Nanoparticles and Thin Films. Journal of Physical Chemistry B, 2012, 116, 11255-11265.	1.2	18
98	Absorption Spectra and Photolysis of Methyl Peroxide in Liquid and Frozen Water. Journal of Physical Chemistry A, 2012, 116, 6068-6077.	1.1	49
99	Chemical Analysis of Complex Organic Mixtures Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2012, 84, 7179-7187.	3.2	52
100	Formation of nitrogen―and sulfur ontaining lightâ€absorbing compounds accelerated by evaporation of water from secondary organic aerosols. Journal of Geophysical Research, 2012, 117, .	3.3	189
101	Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances. Environmental Chemistry, 2012, 9, 163.	0.7	84
102	Glutathione peroxidase inhibitory assay for electrophilic pollutants in diesel exhaust and tobacco smoke. Analytical and Bioanalytical Chemistry, 2012, 403, 431-441.	1.9	12
103	Photolytic processing of secondary organic aerosols dissolved in cloud droplets. Physical Chemistry Chemical Physics, 2011, 13, 12199.	1.3	110
104	Nitrogen-Containing Organic Compounds and Oligomers in Secondary Organic Aerosol Formed by Photooxidation of Isoprene. Environmental Science & Technology, 2011, 45, 6908-6918.	4.6	100
105	Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. Physical Chemistry Chemical Physics, 2011, 13, 3612.	1.3	147
106	Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 6931-6944.	1.9	167
107	High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene. Atmospheric Environment, 2010, 44, 1032-1042.	1.9	167
108	Ultrafast photochemistry of methyl hydroperoxide on ice particles. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6600-6604.	3.3	19

#	Article	IF	CITATIONS
109	Appearance of strong absorbers and fluorophores in limoneneâ€O ₃ secondary organic aerosol due to NH ₄ ⁺ â€mediated chemical aging over long time scales. Journal of Geophysical Research, 2010, 115, .	3.3	234
110	High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water-Soluble Organic Aerosols Collected with a Particle into Liquid Sampler. Analytical Chemistry, 2010, 82, 8010-8016.	3.2	55
111	Hygroscopic Growth and Deliquescence of NaCl Nanoparticles Mixed with Surfactant SDS. Journal of Physical Chemistry B, 2010, 114, 2435-2449.	1.2	42
112	High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols. Analytical Chemistry, 2010, 82, 2048-2058.	3.2	160
113	1,4-butanediol content of aqua dots children's craft toy beads. Journal of Medical Toxicology, 2009, 5, 120-124.	0.8	14
114	Hygroscopic Growth and Deliquescence of NaCl Nanoparticles Coated with Surfactant AOT. Journal of Physical Chemistry A, 2009, 113, 7678-7686.	1.1	29
115	Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers. Journal of Chemical Education, 2009, 86, 219.	1.1	6
116	Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry. Physical Chemistry Chemical Physics, 2009, 11, 7931.	1.3	99
117	Photochemistry of Secondary Organic Aerosol Formed from Oxidation of Monoterpenes. ACS Symposium Series, 2009, , 91-109.	0.5	1
118	Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry. Atmospheric Chemistry and Physics, 2009, 9, 3851-3865.	1.9	52
119	High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. Physical Chemistry Chemical Physics, 2008, 10, 1009-1022.	1.3	166
120	Stoichiometry of Ozonation of Environmentally Relevant Olefins in Saturated Hydrocarbon Solvents. Environmental Science & Technology, 2008, 42, 3582-3587.	4.6	10
121	The Effect of Solvent on the Analysis of Secondary Organic Aerosol Using Electrospray Ionization Mass Spectrometry. Environmental Science & amp; Technology, 2008, 42, 7341-7346.	4.6	96
122	Contribution of Carbonyl Photochemistry to Aging of Atmospheric Secondary Organic Aerosol. Journal of Physical Chemistry A, 2008, 112, 8337-8344.	1.1	61
123	Evidence for excited spin-orbit state reaction dynamics in F+H2: Theory and experiment. Journal of Chemical Physics, 2008, 128, 084313.	1.2	31
124	Kinetic Analysis of Competition between Aerosol Particle Removal and Generation by Ionization Air Purifiers. Environmental Science & Technology, 2007, 41, 2498-2504.	4.6	30
125	Photochemical Aging of Secondary Organic Aerosol Particles Generated from the Oxidation of d-Limonene. Journal of Physical Chemistry A, 2007, 111, 1907-1913.	1.1	97
126	IR Spectra of Protonated Carbonic Acid and Its Isomeric H3O+â‹CO2 Complex. Angewandte Chemie - International Edition, 2007, 46, 4754-4756.	7.2	29

#	Article	IF	CITATIONS
127	Quantification of Ozone Levels in Indoor Environments Generated by Ionization and Ozonolysis Air Purifiers. Journal of the Air and Waste Management Association, 2006, 56, 601-610.	0.9	116
128	Ozonolysis and photolysis of alkene-terminated self-assembled monolayers on quartz nanoparticles: implications for photochemical aging of organic aerosol particles. Physical Chemistry Chemical Physics, 2006, 8, 2506.	1.3	39
129	UV Photodissociation Spectroscopy of Oxidized Undecylenic Acid Films. Journal of Physical Chemistry A, 2006, 110, 3584-3592.	1.1	31
130	Near-IR photodissociation of peroxy acetyl nitrate. Atmospheric Chemistry and Physics, 2005, 5, 385-392.	1.9	14
131	Overtone spectroscopy of H2O clusters in the vOH=2 manifold: Infrared-ultraviolet vibrationally mediated dissociation studies. Journal of Chemical Physics, 2005, 122, 194316.	1.2	54
132	Cis-cis and trans-perp HOONO: Action spectroscopy and isomerization kinetics. Journal of Chemical Physics, 2004, 121, 1432-1448.	1.2	54
133	Temperature and Pressure Dependence of High-Resolution Air-Broadened Absorption Cross Sections of NO2(415â^'525 nm). Journal of Physical Chemistry A, 2004, 108, 4864-4872.	1.1	19
134	Interaction of Gas-Phase Ozone at 296 K with Unsaturated Self-Assembled Monolayers:Â A New Look at an Old System. Journal of Physical Chemistry A, 2004, 108, 10473-10485.	1.1	123
135	Cavity Ringdown Spectroscopy of cis-cis HOONO and the HOONO/HONO2 Branching Ratio in the Reaction OH + NO2 + M. Journal of Physical Chemistry A, 2003, 107, 6974-6985.	1.1	48
136	Vibrationally mediated dissociation dynamics of H2O in the vOH=2 polyad. Journal of Chemical Physics, 2003, 119, 10158-10168.	1.2	15
137	Reactive scattering of F+HD→HF(v,J)+D:â€,HF(v,J) nascent product state distributions and evidence for quantum transition state resonances. Journal of Chemical Physics, 2002, 116, 5622-5632.	1.2	49
138	First Spectroscopic Observation of Gas-Phase HOONO. Journal of Physical Chemistry A, 2002, 106, 855-859.	1.1	82
139	Photodissociation of Peroxynitric Acid in the Near-IR. Journal of Physical Chemistry A, 2002, 106, 3766-3772.	1.1	92
140	Differential scattering dynamics of F+CH4→HF(v,J)+CH3 via high-resolution IR laser dopplerimetry. Chemical Physics Letters, 2001, 335, 381-387.	1.2	31
141	Fast vibrational relaxation of OH(v=9) by ammonia and ozone. Chemical Physics Letters, 2001, 341, 107-114.	1.2	15
142	Quantum state-resolved reactive scattering of F+CH4→HF(v,J)+CH3: Nascent HF(v,J) product state distributions. Journal of Chemical Physics, 2000, 113, 3670-3680.	1.2	73
143	Temperature Dependent Kinetics of the OH/HO2/O3 Chain Reaction by Time-Resolved IR Laser Absorption Spectroscopy. Journal of Physical Chemistry A, 2000, 104, 3964-3973.	1.1	40
144	Intermolecular interaction in the CH3+–He ionic complex revealed by ab initio calculations and infrared photodissociation spectroscopy. Journal of Chemical Physics, 1999, 110, 9527-9535.	1.2	35

Sergey A Nizkorodov

#	Article	IF	CITATIONS
145	Energy-dependent cross sections and nonadiabatic reaction dynamics in F(2P3/2,2P1/2)+n–H2→HF(v,J)+H. Journal of Chemical Physics, 1999, 111, 8404-8416.	1.2	62
146	State-to-state reaction dynamics in crossed supersonic jets: threshold evidence for non-adiabatic channels in F+H2. Faraday Discussions, 1999, 113, 107-117.	1.6	31
147	Photofragmentation dynamics of the (N2O)2+ and (N2O)3+ clusters: fragment N2O+ A ↕X spectra. Chemical Physics, 1998, 239, 369-378.	0.9	2
148	Infrared photodissociation spectra of isomeric SiOH+–Ar (n=1–10) complexes. Chemical Physics, 1998, 239, 393-407.	0.9	58
149	Infrared photodissociation spectra of CH3+–Arn complexes (n=1–8). Journal of Chemical Physics, 1998, 108, 10046-10060.	1.2	70
150	Infrared Spectrum of the Arâ^'NH2+Ionic Complex. Journal of Physical Chemistry A, 1998, 102, 10017-10024.	1.1	28
151	Infrared predissociation spectra of Nen–HN2+ clusters (n=1–5). Journal of Chemical Physics, 1998, 108, 8964-8975.	1.2	47
152	Intermolecular interaction in the OH+–He and OH+–Ne open-shell ionic complexes: Infrared predissociation spectra of the ν1 and ν1+νb vibrations. Journal of Chemical Physics, 1998, 109, 3841-3849.	1.2	39
153	Quantum state-resolved reactive scattering of F+H2 in supersonic jets: Nascent HF(v,J) rovibrational distributions via IR laser direct absorption methods. Journal of Chemical Physics, 1998, 109, 9306-9317.	1.2	55
154	Hindered rotation in ion-neutral molecular complexes: The ν1 vibration of H2–HCO+ and D2–DCO+. Journal of Chemical Physics, 1997, 107, 8229-8238.	1.2	51
155	Microsolvation of the ammonium ion in argon: infrared spectra of NH4+î—,Arn complexes (n = 1–7). International Journal of Mass Spectrometry and Ion Processes, 1997, 167-168, 637-647.	1.9	54
156	Dissociation energy of the Arî—,HN+2 complex. Chemical Physics Letters, 1997, 265, 303-307.	1.2	54
157	Reply to the comment on "The ν3 infrared spectrum of the Heî—,NH4+ complex― Chemical Physics Letters, 1997, 270, 252-254.	1.2	10
158	Infrared predissociation spectra of HeHO2+ and NeHO2+: prediction of thegn1 frequency of HO2+. Chemical Physics Letters, 1997, 278, 26-30.	1.2	48
159	Observation of the infrared spectrum of the ν3 band of the argon-ammonium ionic complex. Chemical Physics Letters, 1996, 250, 266-272.	1.2	28
160	The ν3 infrared spectrum of the Heî—,NH4+ complex. Chemical Physics Letters, 1996, 260, 545-550.	1.2	37
161	Midâ€infrared spectra of He–HN+2and He2–HN+2. Journal of Chemical Physics, 1996, 104, 3876-3885.	1.2	65
162	Midâ€infrared spectra of the protonâ€bound complexes Nen–HCO+ (n=1,2). Journal of Chemical Physics, 1996, 105, 1770-1777.	1.2	60

#	Article	IF	CITATIONS
163	Combined infrared and ab initio study of the H2î—,HN2+ complex. International Journal of Mass Spectrometry and Ion Processes, 1995, 149-150, 167-177.	1.9	22
164	The infrared spectrum of the H2–HCO+ complex. Journal of Chemical Physics, 1995, 102, 5152-5164.	1.2	71
165	The infrared spectrum of the N2H+–He ionâ€neutral complex. Journal of Chemical Physics, 1995, 102, 5570-5571.	1.2	40
166	Size Effects in Cluster Infrared Spectra: the .nu.1 Band of Arn-HCO+ (n = 1-13). The Journal of Physical Chemistry, 1995, 99, 17118-17129.	2.9	114
167	The infrared spectrum of He–HCO+. Journal of Chemical Physics, 1995, 103, 1297-1302.	1.2	53
168	LIF detection of NO3 radical after pulsed excitation of NO2 vapor at 436.45 nm. Chemical Physics Letters, 1994, 222, 135-140.	1.2	5
169	Discrete UV absorption by N+3 î—, (N2)n clusters. Chemical Physics Letters, 1994, 224, 16-20.	1.2	7
170	Rotational distribution of N2+ fragments from 355 nm photolysis of N4+. Chemical Physics Letters, 1994, 226, 187-192.	1.2	3
171	Metastable decay of N+2î—,Hen (ï = 1) (1 < n⩽6) clusters. International Journal of Mass Spectrometry and Ic Processes, 1994, 135, 19-30.	on 1.9	9
172	A 3.Pl.u .rarw. X 3.SIGMA.g- Electronic Spectrum of N3+. The Journal of Physical Chemistry, 1994, 98, 8896-8902.	2.9	34
173	Time-resolved fluorescence of NO 2 in a magnetic field. Chemical Physics Letters, 1993, 215, 662-667.	1.2	14