Xiangwei Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7607838/publications.pdf

Version: 2024-02-01

257357 168321 2,886 62 24 53 h-index citations g-index papers 63 63 63 3162 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Role of angiogenesis in beta-cell epithelial–mesenchymal transition in chronic pancreatitis-induced diabetes. Laboratory Investigation, 2022, 102, 290-297.	1.7	3
2	Characterization of vaginal immune response to a polypropylene mesh: Diabetic vs. normoglycemic conditions. Acta Biomaterialia, 2022, 143, 310-319.	4.1	3
3	Polarized macrophages promote gestational beta cell growth through extracellular signalâ€regulated kinase 5 signalling. Diabetes, Obesity and Metabolism, 2022, 24, 1721-1733.	2.2	3
4	Insulin-positive ductal cells do not migrate into preexisting islets during pregnancy. Experimental and Molecular Medicine, 2021, 53, 605-614.	3.2	2
5	OTME-20. Chitinase-3-like-1(CHI3L1) Protein Complexes Regulate the immunosuppressive Microenvironment in Glioblastoma. Neuro-Oncology Advances, 2021, 3, ii17-ii18.	0.4	O
6	Chitinase-3-like 1 protein complexes modulate macrophage-mediated immune suppression in glioblastoma. Journal of Clinical Investigation, 2021, 131 , .	3.9	49
7	PIGF Reduction Compromises Angiogenesis in Diabetic Foot Disease Through Macrophages. Frontiers in Immunology, 2021, 12, 736153.	2.2	6
8	Pancreatic Duct Infusion: An Effective and Selective Method of Drug and Viral Delivery. Journal of Visualized Experiments, $2021, \ldots$	0.2	0
9	Asparagine Synthetase Is Highly Expressed at Baseline in the Pancreas Through Heightened PERK Signaling. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 1-13.	2.3	12
10	Strategies to promote beta-cell replication and regeneration. , 2020, , 201-213.		O
11	Placental growth factor in beta cells plays an essential role in gestational beta-cell growth. BMJ Open Diabetes Research and Care, 2020, 8, e000921.	1.2	12
12	The Protective Effects of Calcineurin on Pancreatitis in Mice Depend on the Cellular Source. Gastroenterology, 2020, 159, 1036-1050.e8.	0.6	19
13	TAMI-50. CHITINASE-3-LIKE-1 PROTEIN BINDING COMPLEXES REGULATE IMMUNE SUPPRESSION IN GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii224-ii224.	0.6	O
14	14 – Pancreatic and Hematopoietic Calcineurin Independently Mediate Pancreatic Local Injury and Distant Organ Damage During Acute Pancreatitis. Gastroenterology, 2019, 156, S-6.	0.6	0
15	Evidence of a developmental origin of beta-cell heterogeneity using a dual lineage tracing technology. Development (Cambridge), 2019, 146, .	1.2	11
16	Calpastatin Mediates Development of Alzheimer's Disease in Diabetes. Journal of Alzheimer's Disease, 2019, 68, 1051-1059.	1.2	3
17	Simplified Purification of AAV and Delivery to the Pancreas by Intraductal Administration. Methods in Molecular Biology, 2019, 1950, 373-387.	0.4	6
18	Chronic hyperglycemia regulates microglia polarization through ERK5. Aging, 2019, 11, 697-706.	1.4	24

#	Article	IF	CITATIONS
19	The role of ORMDL3/ATF6 in compensated beta cell proliferation during early diabetes. Aging, 2019, 11, 2787-2796.	1.4	8
20	Improved therapeutic effects on diabetic foot by human mesenchymal stem cells expressing MALAT1 as a sponge for microRNA-205-5p. Aging, 2019, 11, 12236-12245.	1.4	27
21	Endogenous Reprogramming of Alpha Cells into Beta Cells, Induced by Viral Gene Therapy, Reverses Autoimmune Diabetes. Cell Stem Cell, 2018, 22, 78-90.e4.	5.2	138
22	<scp>ERK</scp> 5 plays an essential role in gestational betaâ€cell proliferation. Cell Proliferation, 2018, 51, e12410.	2.4	7
23	The Role of the $TGF\hat{l}^2$ Receptor Signaling Pathway in Adult Beta Cell Proliferation. International Journal of Molecular Sciences, 2018, 19, 3136.	1.8	14
24	Transient High Pressure in Pancreatic Ducts Promotes Inflammation and Alters Tight Junctions via Calcineurin Signaling in Mice. Gastroenterology, 2018, 155, 1250-1263.e5.	0.6	54
25	Prion protein is essential for diabetic retinopathy-associated neovascularization. Angiogenesis, 2018, 21, 767-775.	3.7	10
26	Forkhead Box Protein 1 (FoxO1) Inhibits Accelerated \hat{I}^2 Cell Aging in Pancreas-specific SMAD7 Mutant Mice. Journal of Biological Chemistry, 2017, 292, 3456-3465.	1.6	22
27	Gcg CreERT2 knockin mice as a tool for genetic manipulation in pancreatic alpha cells. Diabetologia, 2017, 60, 2399-2408.	2.9	27
28	GLP-1/Exendin-4 induces \hat{l}^2 -cell proliferation via the epidermal growth factor receptor. Scientific Reports, 2017, 7, 9100.	1.6	29
29	SMAD3/Stat3 Signaling Mediates β-Cell Epithelial-Mesenchymal Transition in Chronic Pancreatitis–Related Diabetes. Diabetes, 2017, 66, 2646-2658.	0.3	31
30	Targeted Inhibition of Pancreatic Acinar Cell Calcineurin Is a Novel Strategy to Prevent Post-ERCP Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 119-128.	2.3	25
31	Autophagy protects pancreatic beta cell mass and function in the setting of a high-fat and high-glucose diet. Scientific Reports, 2017, 7, 16348.	1.6	57
32	Suppression of microRNA-205-5p in human mesenchymal stem cells improves their therapeutic potential in treating diabetic foot disease. Oncotarget, 2017, 8, 52294-52303.	0.8	24
33	Beta Cell Regeneration in Adult Mice: Controversy Over the Involvement of Stem Cells. Current Stem Cell Research and Therapy, 2016, 11, 542-546.	0.6	11
34	PNA lectin for purifying mouse acinar cells from the inflamed pancreas. Scientific Reports, 2016, 6, 21127.	1.6	8
35	Transient Suppression of TGF \hat{I}^2 Receptor Signaling Facilitates Human Islet Transplantation. Endocrinology, 2016, 157, 1348-1356.	1.4	29
36	Epidermal Growth Factor Receptor Signaling Regulates \hat{l}^2 Cell Proliferation in Adult Mice. Journal of Biological Chemistry, 2016, 291, 22630-22637.	1.6	30

3

#	Article	IF	CITATIONS
37	Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice. Journal of Biological Chemistry, 2016, 291, 14695-14705.	1.6	11
38	FoxO1 Plays an Important Role in Regulating \hat{I}^2 -Cell Compensation for Insulin Resistance in Male Mice. Endocrinology, 2016, 157, 1055-1070.	1.4	60
39	Prolactin: An Effective Partner for Anti-CD3 in Treating Type 1 Diabetes. Endocrinology, 2016, 157, 39-41.	1.4	1
40	Intraislet Pancreatic Ducts Can Give Rise to Insulin-Positive Cells. Endocrinology, 2016, 157, 166-175.	1.4	42
41	Differential Mechanisms for Insulin-Positive Gene Expression in an Alpha Cell Line. Journal of the American College of Surgeons, 2015, 221, S90-S91.	0.2	0
42	Concise Review: New Insights Into the Role of Macrophages in \hat{I}^2 -Cell Proliferation. Stem Cells Translational Medicine, 2015, 4, 655-658.	1.6	37
43	Mo2013 Live, Dynamic Bioluminescent Imaging of Pancreatic NF-KB Activation in Mice Using Novel Gene Delivery via Intraductal Infusion of an Adeno-Associated Viral Reporter. Gastroenterology, 2015, 148, S-768.	0.6	0
44	Dynamic Imaging of Pancreatic Nuclear Factor κB (NF-κB) Activation in Live Mice Using Adeno-associated Virus (AAV) Infusion and Bioluminescence. Journal of Biological Chemistry, 2015, 290, 11309-11320.	1.6	15
45	Barrier function of the coelomic epithelium in the developing pancreas. Mechanisms of Development, 2014, 134, 67-79.	1.7	3
46	M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1211-20.	3.3	267
47	Pancreatic duct cells as a source of VEGF in mice. Diabetologia, 2014, 57, 991-1000.	2.9	76
48	A Smad Signaling Network Regulates Islet Cell Proliferation. Diabetes, 2014, 63, 224-236.	0.3	64
49	Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes. Nature Protocols, 2014, 9, 2719-2724.	5.5	64
50	Viral Lineage Labeling of Pancreatic Ducts Identifies Duct-Derived Beta Cells in Adult Transgenic Mice. Journal of the American College of Surgeons, 2014, 219, S27.	0.2	0
51	Smad signaling pathways regulate pancreatic endocrine development. Developmental Biology, 2013, 378, 83-93.	0.9	32
52	Neurogenin3 Activation Is Not Sufficient to Direct Duct-to-Beta Cell Transdifferentiation in the Adult Pancreas. Journal of Biological Chemistry, 2013, 288, 25297-25308.	1.6	38
53	TGFβ Receptor Signaling Is Essential for Inflammation-Induced but Not β-Cell Workload–Induced β-Cell Proliferation. Diabetes, 2013, 62, 1217-1226.	0.3	97
54	\hat{l}_{\pm} -Cells are dispensable in postnatal morphogenesis and maturation of mouse pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1030-E1040.	1.8	32

#	Article	IF	Citations
55	Hypoglycemia Reduces Vascular Endothelial Growth Factor A Production by Pancreatic Beta Cells as a Regulator of Beta Cell Mass. Journal of Biological Chemistry, 2013, 288, 8636-8646.	1.6	85
56	A simplified purification method for AAV variant by polyethylene glycol aqueous two-phase partitioning. Bioengineered, 2013, 4, 103-106.	1.4	27
57	Specific transduction and labeling of pancreatic ducts by targeted recombinant viral infusion into mouse pancreatic ducts. Laboratory Investigation, 2013, 93, 1241-1253.	1.7	18
58	No evidence for \hat{l}^2 cell neogenesis in murine adult pancreas. Journal of Clinical Investigation, 2013, 123, 2207-2217.	3.9	169
59	Rapid and simplified purification of recombinant adeno-associated virus. Journal of Virological Methods, 2012, 183, 139-146.	1.0	91
60	Islet Regeneration., 2010,, 105-122.		0
61	\hat{l}^2 Cells Can Be Generated from Endogenous Progenitors in Injured Adult Mouse Pancreas. Cell, 2008, 132, 197-207.	13.5	914
62	Beta Cells within Single Human Islets Originate from Multiple Progenitors. PLoS ONE, 2008, 3, e3559.	1.1	36