R David Britt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7607286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterizing SPASM/twitch Domain-Containing Radical SAM Enzymes by EPR Spectroscopy. Applied Magnetic Resonance, 2022, 53, 809-820.	0.6	9
2	Proposed Mechanism for the Biosynthesis of the [FeFe] Hydrogenase H-Cluster: Central Roles for the Radical SAM Enzymes HydG and HydE. ACS Bio & Med Chem Au, 2022, 2, 11-21.	1.7	6
3	Accumulation and Pulse Electron Paramagnetic Resonance Spectroscopic Investigation of the 4-Oxidobenzyl Radical Generated in the Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Enzyme HydG. Biochemistry, 2022, 61, 107-116.	1.2	7
4	Organometallic Fe ₂ (μ-SH) ₂ (CO) ₄ (CN) ₂ Cluster Allows the Biosynthesis of the [FeFe]-Hydrogenase with Only the HydF Maturase. Journal of the American Chemical Society, 2022, 144, 1534-1538.	6.6	14
5	Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science, 2022, 375, 198-202.	6.0	246
6	A Night-Time Edge Site Intermediate in the Cyanobacterial Circadian Clock Identified by EPR Spectroscopy. Journal of the American Chemical Society, 2022, 144, 184-194.	6.6	7
7	Spectroscopic characterization of Mn2+ and Cd2+ coordination to phosphorothioates in the conserved A9 metal site of the hammerhead ribozyme. Journal of Inorganic Biochemistry, 2022, 230, 111754.	1.5	2
8	Site directed spin labeling to elucidating the mechanism of the cyanobacterial circadian clock. Methods in Enzymology, 2022, 666, 59-78.	0.4	2
9	Experimental guidelines for trapping paramagnetic reaction intermediates in radical S-adenosylmethionine enzymes. Methods in Enzymology, 2022, 666, 451-468.	0.4	0
10	Versatile Fe–Sn Bonding Interactions in a Metallostannylene System: Multiple Bonding and C–H Bond Activation. Journal of the American Chemical Society, 2022, 144, 358-367.	6.6	14
11	Biosynthesis of the [FeFe] hydrogenase H-cluster <i>via</i> a synthetic [Fe(<scp>ii</scp>)(CN)(CO) ₂ (cysteinate)] ^{â^'} complex. Dalton Transactions, 2021, 50, 12386-12391.	1.6	2
12	Delocalization tunable by ligand substitution in [L2Al]nâ^' complexes highlights a mechanism for strong electronic coupling. Chemical Science, 2021, 12, 675-682.	3.7	5
13	Memorial Viewpoint for Bridgette Barry. Journal of Physical Chemistry B, 2021, 125, 4583-4584.	1.2	0
14	Menaquinone Biosynthesis: New Strategies to Trap Radical Intermediates in the MqnE-Catalyzed Reaction. Biochemistry, 2021, 60, 1642-1646.	1.2	5
15	Crystal Structure of the [FeFe]-Hydrogenase Maturase HydE Bound to Complex-B. Journal of the American Chemical Society, 2021, 143, 8499-8508.	6.6	26
16	Trapping a cross-linked lysine–tryptophan radical in the catalytic cycle of the radical SAM enzyme SuiB. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
17	CaMn 3 IV O 4 Cubane Models of the Oxygenâ€Evolving Complex: Spin Ground States S <9/2 and the Effect of Oxo Protonation. Angewandte Chemie, 2021, 133, 17812-17820.	1.6	1
18	CaMn ₃ ^{IV} O ₄ Cubane Models of the Oxygenâ€Evolving Complex: Spin Ground States <i>S</i> <9/2 and the Effect of Oxo Protonation. Angewandte Chemie - International Edition, 2021, 60, 17671-17679.	7.2	14

#	Article	IF	CITATIONS
19	Isolation of a triplet benzene dianion. Nature Chemistry, 2021, 13, 1001-1005.	6.6	15
20	Quantum Chemical Study of a Radical Relay Mechanism for the HydG-Catalyzed Synthesis of a Fe(II)(CO) ₂ (CN)cysteine Precursor to the H-Cluster of [FeFe] Hydrogenase. Biochemistry, 2021, 60, 3016-3026.	1.2	4
21	Metallo-inhibition of Mnx, a bacterial manganese multicopper oxidase complex. Journal of Inorganic Biochemistry, 2021, 224, 111547.	1.5	3
22	Protein-Embedded Metalloporphyrin Arrays Templated by Circularly Permuted Tobacco Mosaic Virus Coat Proteins. ACS Nano, 2021, 15, 8110-8119.	7.3	7
23	Tracing the incorporation of the "ninth sulfur―into the nitrogenase cofactor precursor with selenite and tellurite. Nature Chemistry, 2021, 13, 1228-1234.	6.6	12
24	Biosynthesis of fluopsin C, a copper-containing antibiotic from <i>Pseudomonas aeruginosa</i> . Science, 2021, 374, 1005-1009.	6.0	50
25	A Uranium(II) Arene Complex That Acts as a Uranium(I) Synthon. Journal of the American Chemical Society, 2021, 143, 19748-19760.	6.6	34
26	Serine is the molecular source of the NH(CH ₂) ₂ bridgehead moiety of the <i>in vitro</i> assembled [FeFe] hydrogenase H-cluster. Chemical Science, 2020, 11, 1241-1247.	3.7	30
27	EPR Spectroscopy of Iron- and Nickel-Doped [ZnAl]-Layered Double Hydroxides: Modeling Active Sites in Heterogeneous Water Oxidation Catalysts. Journal of the American Chemical Society, 2020, 142, 1838-1845.	6.6	28
28	<i>S</i> = 3 Ground State for a Tetranuclear Mn ^{IV} ₄ O ₄ Complex Mimicking the S ₃ State of the Oxygen-Evolving Complex. Journal of the American Chemical Society, 2020, 142, 3753-3761.	6.6	22
29	Bioassembly of complex iron–sulfur enzymes: hydrogenases andÂnitrogenases. Nature Reviews Chemistry, 2020, 4, 542-549.	13.8	31
30	Electronic Structures of Rhenium(II) β-Diketiminates Probed by EPR Spectroscopy: Direct Comparison of an Acceptor-Free Complex to Its Dinitrogen, Isocyanide, and Carbon Monoxide Adducts. Journal of the American Chemical Society, 2020, 142, 13805-13813.	6.6	10
31	Dissociative Ligand Exchange at Identical Molecular and Carbon Nanoparticle Binding Sites. Chemistry of Materials, 2020, 32, 8540-8552.	3.2	0
32	Metalâ€Templated Design of Chemically Switchable Protein Assemblies with Highâ€Affinity Coordination Sites. Angewandte Chemie, 2020, 132, 22124-22128.	1.6	4
33	Biosynthesis of the catalytic H-cluster of [FeFe] hydrogenase: the roles of the Fe–S maturase proteins HydE, HydF, and HydG. Chemical Science, 2020, 11, 10313-10323.	3.7	33
34	Metalâ€Templated Design of Chemically Switchable Protein Assemblies with Highâ€Affinity Coordination Sites. Angewandte Chemie - International Edition, 2020, 59, 21940-21944.	7.2	24
35	Both N-Terminal and C-Terminal Histidine Residues of the Prion Protein Are Essential for Copper Coordination and Neuroprotective Self-Regulation. Journal of Molecular Biology, 2020, 432, 4408-4425.	2.0	28
36	Radical SAM Enzyme HydE Generates Adenosylated Fe(I) Intermediates En Route to the [FeFe]-Hydrogenase Catalytic H-Cluster. Journal of the American Chemical Society, 2020, 142, 10841-10848.	6.6	42

#	Article	IF	CITATIONS
37	Monitoring Protein–Protein Interactions in the Cyanobacterial Circadian Clock in Real Time via Electron Paramagnetic Resonance Spectroscopy. Biochemistry, 2020, 59, 2387-2400.	1.2	13
38	Elucidation of a Copper Binding Site in Proinsulin C-peptide and Its Implications for Metal-Modulated Activity. Inorganic Chemistry, 2020, 59, 9339-9349.	1.9	7
39	Lewis acid capping of a uranium(<scp>v</scp>) nitride <i>via</i> a uranium(<scp>iii</scp>) azide molecular square. Chemical Communications, 2020, 56, 4535-4538.	2.2	28
40	Structural Properties and Catalytic Implications of the SPASM Domain Iron–Sulfur Clusters in <i>Methylorubrum extorquens</i> PqqE. Journal of the American Chemical Society, 2020, 142, 12620-12634.	6.6	17
41	Mimicking of Tunichlorin: Deciphering the Importance of a β-Hydroxyl Substituent on Boosting the Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 2177-2188.	5.5	24
42	Molecular tuning of CO2-to-ethylene conversion. Nature, 2020, 577, 509-513.	13.7	682
43	Identity and function of an essential nitrogen ligand of the nitrogenase cofactor biosynthesis protein NifB. Nature Communications, 2020, 11, 1757.	5.8	16
44	Pulse EPR Spectroscopic Characterization of the S3 State of the Oxygen-Evolving Complex of Photosystem II Isolated from Synechocystis. Biochemistry, 2020, 59, 4864-4872.	1.2	23
45	Bioassembly of complex iron-sulfur enzymes: hydrogenases and nitrogenases. Nature Reviews Chemistry, 2020, 4, 542-549.	13.8	7
46	Spectroscopic Characterization of an Eightâ€Iron Nitrogenase Cofactor Precursor that Lacks the "9 th Sulfur― Angewandte Chemie - International Edition, 2019, 58, 14703-14707.	7.2	24
47	Reversible Sn–Sn Triple Bond Dissociation in a Distannyne: Support for Charge-Shift Bonding Character. Journal of the American Chemical Society, 2019, 141, 12527-12530.	6.6	45
48	Germanium Hydride Radical Trapped during the Photolysis/Thermolysis of Diarylgermylene. Inorganic Chemistry, 2019, 58, 15034-15038.	1.9	10
49	Photosystem II, poised for O ₂ formation. Science, 2019, 366, 305-306.	6.0	30
50	Spectroscopic Characterization of an Eightâ€Iron Nitrogenase Cofactor Precursor that Lacks the "9 th Sulfur†Angewandte Chemie, 2019, 131, 14845-14849.	1.6	6
51	Isolation and Study of Ruthenium–Cobalt Oxo Cubanes Bearing a High-Valent, Terminal Ru ^V –Oxo with Significant Oxyl Radical Character. Journal of the American Chemical Society, 2019, 141, 19859-19869.	6.6	21
52	Conformational Response of N-Terminally Truncated Cytochrome P450 3A4 to Ligand Binding in Solution. Biochemistry, 2019, 58, 3903-3910.	1.2	12
53	Surface Photovoltage Spectroscopy Observes Sub-Band-Gap Defects in Hydrothermally Synthesized SrTiO ₃ Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 25081-25090.	1.5	18
54	Organic Electron Delocalization Modulated by Ligand Charge States in [L ₂ M] ^{<i>n–</i>} Complexes of Group 13 Ions. Journal of the American Chemical Society, 2019, 141, 15792-15803.	6.6	20

#	Article	IF	CITATIONS
55	Incorporation of Ni2+, Co2+, and Selenocysteine into the Auxiliary Fe-S Cluster of the Radical SAM Enzyme HydG. Inorganic Chemistry, 2019, 58, 12601-12608.	1.9	7
56	The binuclear cluster of [FeFe] hydrogenase is formed with sulfur donated by cysteine of an [Fe(Cys)(CO) ₂ (CN)] organometallic precursor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20850-20855.	3.3	36
57	Trapping and Electron Paramagnetic Resonance Characterization of the 5′dAdo [•] Radical in a Radical <i>S</i> -Adenosyl Methionine Enzyme Reaction with a Non-Native Substrate. ACS Central Science, 2019, 5, 1777-1785.	5.3	49
58	H ₂ Activation and Direct Access to Terminal Nitride and <i>cyclo</i> -P ₃ Complexes by an Acceptor-Free Rhenium(II) β-Diketiminate. Inorganic Chemistry, 2019, 58, 13492-13501.	1.9	17
59	Murine Calprotectin Coordinates Mn(II) at a Hexahistidine Site with Ca(II)-Dependent Affinity. Inorganic Chemistry, 2019, 58, 13578-13590.	1.9	11
60	High-Field EPR Spectroscopic Characterization of Mn(II) Bound to the Bacterial Solute-Binding Proteins MntC and PsaA. Journal of Physical Chemistry B, 2019, 123, 4929-4934.	1.2	7
61	Metal Bonding with 3d and 6d Orbitals: An EPR and ENDOR Spectroscopic Investigation of Ti ³⁺ –Al and Th ³⁺ –Al Heterobimetallic Complexes. Inorganic Chemistry, 2019, 58, 7978-7988.	1.9	14
62	Two-Coordinate, Late First-Row Transition Metal Amido Derivatives of the Bulky Ligand -N(SiPr ^{<i>i</i>} ₃)Dipp (Dipp = 2,6-diisopropylphenyl): Effects of the Ligand on the Stability of Two-Coordinate Copper(II) Complexes. Inorganic Chemistry, 2019, 58, 8793-8799.	1.9	10
63	An Intermediate Conformational State of Cytochrome P450cam-CN in Complex with Putidaredoxin. Biochemistry, 2019, 58, 2353-2361.	1.2	12
64	A Uranium Tri-Rhenium Triple Inverse Sandwich Compound. Journal of the American Chemical Society, 2019, 141, 5144-5148.	6.6	22
65	Effects of Lewis Acidic Metal Ions (M) on Oxygen-Atom Transfer Reactivity of Heterometallic Mn ₃ MO ₄ Cubane and Fe ₃ MO(OH) and Mn ₃ MO(OH) Clusters. Inorganic Chemistry, 2019, 58, 2336-2345.	1.9	21
66	Electron Paramagnetic Resonance Spectroscopic Identification of the Fe–S Clusters in the SPASM Domain-Containing Radical SAM Enzyme PqqE. Biochemistry, 2019, 58, 5173-5187.	1.2	16
67	EPR Evidence for the Origin of Nonlinear Effects in an Enantioselective Cu(II)-Catalyzed Spiroannulation. ACS Catalysis, 2019, 9, 1224-1230.	5.5	19
68	Frontispiece: Electrochemical Reduction of N2 to NH3 at Low Potential by a Molecular Aluminum Complex. Chemistry - A European Journal, 2019, 25, .	1.7	0
69	Biophysical Characterization of a Disabled Double Mutant of Soybean Lipoxygenase: The "Undoing―of Precise Substrate Positioning Relative to Metal Cofactor and an Identified Dynamical Network. Journal of the American Chemical Society, 2019, 141, 1555-1567.	6.6	19
70	DEPC modification of the CuA protein from Thermus thermophilus. Journal of Biological Inorganic Chemistry, 2019, 24, 117-135.	1.1	1
71	Electrochemical Reduction of N ₂ to NH ₃ at Low Potential by a Molecular Aluminum Complex. Chemistry - A European Journal, 2019, 25, 454-458.	1.7	38
72	Chemical structure and bonding in a thorium(<scp>iii</scp>)–aluminum heterobimetallic complex. Chemical Science, 2018, 9, 4317-4324.	3.7	34

#	Article	IF	CITATIONS
73	A [4Fe–4S]-Fe(CO)(CN)-l-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly. Nature Chemistry, 2018, 10, 555-560.	6.6	45
74	Evaluation of the Catalytic Relevance of the COâ€Bound States of Vâ€Nitrogenase. Angewandte Chemie - International Edition, 2018, 57, 3411-3414.	7.2	24
75	X-ray and EPR Characterization of the Auxiliary Fe–S Clusters in the Radical SAM Enzyme PqqE. Biochemistry, 2018, 57, 1306-1315.	1.2	31
76	Evaluation of the Catalytic Relevance of the COâ€Bound States of Vâ€Nitrogenase. Angewandte Chemie, 2018, 130, 3469-3472.	1.6	10
77	Structural Effects of Ammonia Binding to the Mn ₄ CaO ₅ Cluster of Physical Chemistry B, 2018, 122, 1588-1599.	1.2	26
78	A Radical Intermediate in <i>Bacillus subtilis</i> QueE during Turnover with the Substrate Analogue 6-Carboxypterin. Journal of the American Chemical Society, 2018, 140, 1753-1759.	6.6	15
79	Biochemical and Spectroscopic Observation of Mn(II) Sequestration from Bacterial Mn(II) Transport Machinery by Calprotectin. Journal of the American Chemical Society, 2018, 140, 110-113.	6.6	19
80	Tetranuclear [Mn ^{III} Mn ₃ ^{IV} O ₄] Complexes as Spectroscopic Models of the S ₂ State of the Oxygen Evolving Complex in Photosystem II. Journal of the American Chemical Society, 2018, 140, 17175-17187.	6.6	34
81	EPR-Derived Structure of a Paramagnetic Intermediate Generated by Biotin Synthase BioB. Journal of the American Chemical Society, 2018, 140, 12947-12963.	6.6	13
82	An Aminoimidazole Radical Intermediate in the Anaerobic Biosynthesis of the 5,6-Dimethylbenzimidazole Ligand to Vitamin B12. Journal of the American Chemical Society, 2018, 140, 12798-12807.	6.6	9
83	Mn(III) species formed by the multi-copper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy. Journal of Biological Inorganic Chemistry, 2018, 23, 1093-1104.	1.1	8
84	Probing the coordination and function of Fe4S4 modules in nitrogenase assembly protein NifB. Nature Communications, 2018, 9, 2824.	5.8	40
85	Electronic Structure of Two Catalytic States of the [FeFe] Hydrogenase H-Cluster As Probed by Pulse Electron Paramagnetic Resonance Spectroscopy. Inorganic Chemistry, 2018, 57, 10935-10944.	1.9	43
86	The Role of the Secondary Coordination Sphere in a Fungal Polysaccharide Monooxygenase. ACS Chemical Biology, 2017, 12, 1095-1103.	1.6	89
87	Reactive sites and course of reduction in the Rieske protein. Journal of Biological Inorganic Chemistry, 2017, 22, 545-557.	1.1	6
88	Copper Binding Sites in the Manganese-Oxidizing Mnx Protein Complex Investigated by Electron Paramagnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2017, 139, 8868-8877.	6.6	14
89	Manganese–Cobalt Oxido Cubanes Relevant to Manganese-Doped Water Oxidation Catalysts. Journal of the American Chemical Society, 2017, 139, 5579-5587.	6.6	47
90	Regulation of nitric oxide signaling by formation of a distal receptor–ligand complex. Nature Chemical Biology, 2017, 13, 1216-1221.	3.9	23

#	Article		CITATIONS
91	Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Coordinated Two-Stage Mn(II)/(III) and Mn(III)/(IV) Mechanism. Journal of the American Chemical Society, 2017, 139, 11381-11391.	6.6	58
92	Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Binuclear Activation Mechanism. Journal of the American Chemical Society, 2017, 139, 11369-11380.	6.6	39
93	Putidaredoxin Binds to the Same Site on Cytochrome P450cam in the Open and Closed Conformation. Biochemistry, 2017, 56, 4371-4378.	1.2	21
94	Insertion of a Transient Tin Nitride into Carbon–Carbon and Boron–Carbon Bonds. Inorganic Chemistry, 2017, 56, 14596-14604.	1.9	9
95	Electron Paramagnetic Resonance Characterization of Dioxygen-Bridged Cobalt Dimers with Relevance to Water Oxidation. Inorganic Chemistry, 2016, 55, 12728-12736.	1.9	11
96	EPR Spectroscopic Characterization of a Jahnâ€Teller Distorted (C 3 v → C s) Fourâ€Coordinate Chromium(V) Oxo Species. Israel Journal of Chemistry, 2016, 56, 864-871.	1.0	2
97	Dispersionâ€Forceâ€Assisted Disproportionation: A Stable Twoâ€Coordinate Copper(II) Complex. Angewandte Chemie - International Edition, 2016, 55, 10444-10447.	7.2	33
98	Protonation of the Hydroperoxo Intermediate of Cytochrome P450 2B4 Is Slower in the Presence of Cytochrome P450 Reductase Than in the Presence of Cytochrome b5. Biochemistry, 2016, 55, 6558-6567.	1.2	18
99	Dispersionâ€Forceâ€Assisted Disproportionation: A Stable Two oordinate Copper(II) Complex. Angewandte Chemie, 2016, 128, 10600-10603.	1.6	10
100	Electron Paramagnetic Resonance Characterization of Three Iron–Sulfur Clusters Present in the Nitrogenase Cofactor Maturase NifB from <i>Methanocaldococcus infernus</i> . Journal of the American Chemical Society, 2016, 138, 7468-7471.	6.6	36
101	Biophysical Characterization of Fluorotyrosine Probes Site-Specifically Incorporated into Enzymes: <i>E. coli</i> Ribonucleotide Reductase As an Example. Journal of the American Chemical Society, 2016, 138, 7951-7964.	6.6	43
102	The Radical SAM Enzyme HydG Requires Cysteine and a Dangler Iron for Generating an Organometallic Precursor to the [FeFe]-Hydrogenase H-Cluster. Journal of the American Chemical Society, 2016, 138, 1146-1149.	6.6	46
103	Biochemical and Spectroscopic Characterization of a Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link. Biochemistry, 2016, 55, 2122-2134.	1.2	55
104	Formation of Hexacoordinate Mn(III) in <i>Bacillus subtilis</i> Oxalate Decarboxylase Requires Catalytic Turnover. Biochemistry, 2016, 55, 429-434.	1.2	15
105	Biosynthesis of the [FeFe] Hydrogenase H Cluster: A Central Role for the Radical SAM Enzyme HydG. Inorganic Chemistry, 2016, 55, 478-487.	1.9	24
106	EPR Spectroscopic Studies of [FeFe]-Hydrogenase Maturation. Topics in Catalysis, 2015, 58, 699-707.	1.3	9
107	Manganese Binding Properties of Human Calprotectin under Conditions of High and Low Calcium: X-ray Crystallographic and Advanced Electron Paramagnetic Resonance Spectroscopic Analysis. Journal of the American Chemical Society, 2015, 137, 3004-3016.	6.6	65
108	Biochemical and EPR-Spectroscopic Investigation into Heterologously Expressed Vinyl Chloride Reductive Dehalogenase (VcrA) from <i>Dehalococcoides mccartyi</i> Strain VS. Journal of the American Chemical Society, 2015, 137, 3525-3532.	6.6	70

#	Article		CITATIONS
109	X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1362-1367.	3.3	97
110	Biochemical and Spectroscopic Studies of Epoxyqueuosine Reductase: A Novel Iron–Sulfur Cluster- and Cobalamin-Containing Protein Involved in the Biosynthesis of Queuosine. Biochemistry, 2015, 54, 4927-4935.	1.2	27
111	Ammonia Binds to the Dangler Manganese of the Photosystem II Oxygen-Evolving Complex. Journal of the American Chemical Society, 2015, 137, 8829-8837.	6.6	70
112	A protein fold switch joins the circadian oscillator to clock output in cyanobacteria. Science, 2015, 349, 324-328.	6.0	157
113	An Mn(V)–oxo role in splitting water?. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5265-5266.	3.3	25
114	Multicopper manganese oxidase accessory proteins bind Cu and heme. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1853-1859.	1.1	24
115	Mn(II) Binding and Subsequent Oxidation by the Multicopper Oxidase MnxG Investigated by Electron Paramagnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2015, 137, 10563-10575.	6.6	17
116	Cysteine as a ligand platform in the biosynthesis of the FeFe hydrogenase H cluster. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11455-11460.	3.3	60
117	Pulse Electron Paramagnetic Resonance Studies of the Interaction of Methanol with the S ₂ State of the Mn ₄ O ₅ Ca Cluster of Photosystem II. Biochemistry, 2014, 53, 7914-7928.	1.2	42
118	The HydG Enzyme Generates an Fe(CO) ₂ (CN) Synthon in Assembly of the FeFe Hydrogenase H-Cluster. Science, 2014, 343, 424-427.	6.0	109
119	The Cyanide Ligands of [FeFe] Hydrogenase: Pulse EPR Studies of 13C and 15N-Labeled H-Cluster. Journal of the American Chemical Society, 2014, 136, 12237-12240.	6.6	37
120	One step closer to O ₂ . Science, 2014, 345, 736-736.	6.0	16
121	Role of oxido incorporation and ligand lability in expanding redox accessibility of structurally related Mn4 clusters. Chemical Science, 2013, 4, 3986.	3.7	40
122	The Conformation of P450cam in Complex with Putidaredoxin Is Dependent on Oxidation State. Journal of the American Chemical Society, 2013, 135, 11732-11735.	6.6	38
123	Electron Paramagnetic Resonance Analysis of a Transient Species Formed During Water Oxidation Catalyzed by the Complex Ion [(bpy) ₂ Ru(OH ₂)] ₂ O ⁴⁺ . Inorganic Chemistry, 2013, 52, 4578-4586.	1.9	24
124	A Radical Intermediate in Tyrosine Scission to the CO and CN ^{â^'} Ligands of FeFe Hydrogenase. Science, 2013, 342, 472-475.	6.0	107
125	Synthetic model of the asymmetric [Mn ₃ CaO ₄] cubane core of the oxygen-evolving complex of photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2257-2262.	3.3	259
126	Double electron–electron resonance shows cytochrome P450cam undergoes a conformational change in solution upon binding substrate. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12888-12893.	3.3	50

#	Article	IF	CITATIONS
127	9-Mercaptodethiobiotin Is Generated as a Ligand to the [2Fe–2S] ⁺ Cluster during the Reaction Catalyzed by Biotin Synthase from <i>Escherichia coli</i> . Journal of the American Chemical Society, 2012, 134, 9042-9045.	6.6	36
128	New Insights into [FeFe] Hydrogenase Activation and Maturase Function. PLoS ONE, 2012, 7, e45850.	1.1	66
129	Reduction of the [2Fe–2S] Cluster Accompanies Formation of the Intermediate 9-Mercaptodethiobiotin in <i>Escherichia coli</i> Biotin Synthase. Biochemistry, 2011, 50, 7953-7963.	1.2	34
130	Ligation of D1-His332 and D1-Asp170 to the Manganese Cluster of Photosystem II from <i>Synechocystis</i> Assessed by Multifrequency Pulse EPR Spectroscopy. Biochemistry, 2011, 50, 7390-7404.	1.2	63
131	A Redox Series of Aluminum Complexes: Characterization of Four Oxidation States Including a Ligand Biradical State Stabilized via Exchange Coupling. Journal of the American Chemical Society, 2011, 133, 8662-8672.	6.6	95
132	Hydrogen Bonding of Tryptophan Radicals Revealed by EPR at 700 GHz. Journal of the American Chemical Society, 2011, 133, 18098-18101.	6.6	52
133	EPR Evidence for Co(IV) Species Produced During Water Oxidation at Neutral pH. Journal of the American Chemical Society, 2010, 132, 6882-6883.	6.6	488
134	Atomic hydrogen as high-precision field standard for high-field EPR. Journal of Magnetic Resonance, 2010, 207, 158-163.	1.2	34
135	Binding of Histidine in the (Cys) ₃ (His) ₁ -Coordinated [2Feâ^2S] Cluster of Human mitoNEET. Journal of the American Chemical Society, 2010, 132, 2037-2049.	6.6	67
136	Formation of a Manganese Tricarbonyl on the MgO Surface from Mn ₂ (CO) ₁₀ : Characterization by Infrared, Electron Paramagnetic Resonance, and X-ray Absorption Spectroscopies. Journal of Physical Chemistry C, 2010, 114, 17212-17221.	1.5	5
137	Multifrequency EPR Studies of Manganese Catalases Provide a Complete Description of Proteinaceous Nitrogen Coordination. Journal of Physical Chemistry B, 2010, 114, 14178-14188.	1.2	31
138	Nitric Oxide Synthase Stabilizes the Tetrahydrobiopterin Cofactor Radical by Controlling Its Protonation State. Journal of the American Chemical Society, 2010, 132, 11812-11823.	6.6	78
139	¹³ C ENDOR Reveals That the D1 Polypeptide C-Terminus Is Directly Bound to Mn in the Photosystem II Oxygen Evolving Complex. Journal of the American Chemical Society, 2010, 132, 446-447.	6.6	31
140	Interaction of PqqE and PqqD in the pyrroloquinoline quinone (PQQ) biosynthetic pathway links PqqD to the radical SAM superfamily. Chemical Communications, 2010, 46, 7031.	2.2	43
141	Direct Spectroscopic Observation of Large Quenching of First-Order Orbital Angular Momentum with Bending in Monomeric, Two-Coordinate Fe(II) Primary Amido Complexes and the Profound Magnetic Effects of the Absence of Jahnâ ⁻¹ and Rennerâ ⁻¹ Teller Distortions in Rigorously Linear Coordination. Iournal of the American Chemical Society. 2009. 131. 12693-12702.	6.6	87
142	Structure of the Biliverdin Radical Intermediate in Phycocyanobilin:Ferredoxin Oxidoreductase Identified by High-Field EPR and DFT. Journal of the American Chemical Society, 2009, 131, 1986-1995.	6.6	38
143	General and efficient simulation of pulse EPR spectra. Physical Chemistry Chemical Physics, 2009, 11, 6614.	1.3	136
144	Pyrroloquinoline Quinone Biogenesis: Demonstration That PqqE from <i>Klebsiella pneumoniae</i> Is a Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Enzyme. Biochemistry, 2009, 48, 10151-10161.	1.2	84

#	Article	IF	CITATIONS
145	No Evidence from FTIR Difference Spectroscopy That Aspartate-342 of the D1 Polypeptide Ligates a Mn Ion That Undergoes Oxidation during the S0to S1, S1to S2, or S2to S3Transitions in Photosystem Ilâ€. Biochemistry, 2007, 46, 3151-3160.	1.2	70
146	Density Functional Theory calculations on the magnetic properties of the model tyrosine radical-histidine complex mimicking tyrosyl radical YD · in photosystem II. Research on Chemical Intermediates, 2007, 33, 863-883.	1.3	9
147	Four young research investigators were honored at the 2006 Gordon Research Conference on Photosynthesis. Photosynthesis Research, 2007, 92, 137-138.	1.6	7
148	Spectroscopic and Electronic Structure Studies of the Trinuclear Cu Cluster Active Site of the Multicopper Oxidase Laccase:Â Nature of Its Coordination Unsaturation. Journal of the American Chemical Society, 2005, 127, 13832-13845.	6.6	124
149	Coordination of proton and electron transfer from the redox-active tyrosine, YZ, of Photosystem II and examination of the electrostatic influence of oxidized tyrosine, YDË™(H+). Physical Chemistry Chemical Physics, 2004, 6, 4844-4850.	1.3	31
150	ESE-ENDOR Study and DFT Calculations on Oxovanadium Compounds:  Effect of Axial Anionic Ligands on the 51V Nuclear Quadrupolar Coupling Constant. Journal of Physical Chemistry A, 2004, 108, 4310-4321.	1.1	38
151	Recent pulsed EPR studies of the Photosystem II oxygen-evolving complex: implications as to water oxidation mechanisms. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1655, 158-171.	0.5	204
152	Electron Spin Echo Methods: A Tutorial. ACS Symposium Series, 2003, , 16-54.	0.5	6
153	Simulations of the 1 H electron spin echo–electron nuclear double resonance and 2 H electron spin echo envelope modulation spectra of exchangeable hydrogen nuclei coupled to the S 2 –state photosystem II manganese cluster. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1359-1366.	1.8	56
154	Dual-Mode EPR Study of Mn(III) Salen and the Mn(III) Salen-Catalyzed Epoxidation ofcis-β-Methylstyrene. Journal of the American Chemical Society, 2001, 123, 5710-5719.	6.6	164
155	Does Histidine 332 of the D1 Polypeptide Ligate the Manganese Cluster in Photosystem II? An Electron Spin Echo Envelope Modulation Studyâ€. Biochemistry, 2001, 40, 3690-3699.	1.2	90
156	Nitrogen ligation to the manganese cluster of Photosystem II in the absence of the extrinsic proteins and as a function of pH. , 2000, 65, 175-185.		4
157	Electron spin-lattice relaxation studies of different forms of the S(2) state multiline EPR signal of the Photosystem II oxygen-evolving complex. , 2000, 66, 189-198.		22
158	Pulsed and Parallel-Polarization EPR Characterization of the Photosystem II Oxygen-Evolving Complex. Annual Review of Biophysics and Biomolecular Structure, 2000, 29, 463-495.	18.3	121
159	55Mn ENDOR of the S2-State Multiline EPR Signal of Photosystem II:Â Implications on the Structure of the Tetranuclear Mn Cluster. Journal of the American Chemical Society, 2000, 122, 10926-10942.	6.6	375
160	Dual-Mode EPR Detects the Initial Intermediate in Photoassembly of the Photosystem II Mn Cluster:Â The Influence of Amino Acid Residue 170 of the D1 Polypeptide on Mn Coordination. Journal of the American Chemical Society, 2000, 122, 3754-3761.	6.6	140
161	Mn2+â^`Nitrogen Interactions in RNA Probed by Electron Spinâ^`Echo Envelope Modulation Spectroscopy:Â Application to the Hammerhead Ribozyme. Journal of the American Chemical Society, 1999, 121, 9215-9218.	6.6	66
162	Parallel Polarization EPR Characterization of the Mn(III) Center of Oxidized Manganese Superoxide Dismutase. Journal of the American Chemical Society, 1999, 121, 4714-4715.	6.6	84

#	Article	IF	CITATIONS
163	The 23 and 17 kDa Extrinsic Proteins of Photosystem II Modulate the Magnetic Properties of the S1-State Manganese Clusterâ€. Biochemistry, 1998, 37, 5039-5045.	1.2	88
164	Parallel Polarization EPR Detection of an S1-State "Multiline―EPR Signal in Photosystem II Particles fromSynechocystissp. PCC 6803. Journal of the American Chemical Society, 1998, 120, 447-448.	6.6	100
165	55Mn Pulsed ENDOR Demonstrates That the Photosystem II "Split―EPR Signal Arises from a Magnetically-Coupled Manganoâ^'Tyrosyl Complex. Journal of the American Chemical Society, 1998, 120, 6840-6841.	6.6	112
166	Pulsed EPR Studies of Particulate Methane Monooxygenase fromMethylococcus Capsulatus(Bath):Â Evidence for Histidine Ligation. Journal of the American Chemical Society, 1998, 120, 3247-3248.	6.6	42
167	ESEEM Studies of Alcohol Binding to the Manganese Cluster of the Oxygen Evolving Complex of Photosystem II. Journal of the American Chemical Society, 1998, 120, 13321-13333.	6.6	94
168	Progress in Characterization of the Photosystem II Oxygen Evolving Complex Using Advanced EPR Methods. ACS Symposium Series, 1998, , 272-285.	0.5	5
169	Hydrogen Bonding, Solvent Exchange, and Coupled Proton and Electron Transfer in the Oxidation and Reduction of Redox-Active Tyrosine YZin Mn-Depleted Core Complexes of Photosystem IIâ€. Biochemistry, 1998, 37, 17931-17943.	1.2	131
170	Pulsed ¹ H and ⁵⁵ Mn ENDOR studies of dinuclear Mn(III)Mn(IV) model complexes. Molecular Physics, 1998, 95, 1283-1294.	0.8	23
171	Spectroscopic Characterization of Inhibitor Interactions with the Mn(III)/Mn(IV) Core inLactobacillus plantarumManganese Catalase. Journal of the American Chemical Society, 1997, 119, 9215-9225.	6.6	39
172	Proximity of Acetate, Manganese, and Exchangeable Deuterons to Tyrosine YZ•in Acetate-Inhibited Photosystem II Membranes: Implications for the Direct Involvement of YZ•in Water-Splittingâ€. Biochemistry, 1997, 36, 12062-12070.	1.2	97
173	ESE-ENDOR and ESEEM Characterization of Water and Methanol Ligation to a Dinuclear Mn(III)Mn(IV) Complexâ€. Journal of the American Chemical Society, 1997, 119, 4481-4491.	6.6	71
174	Manganeseâ^'Tyrosine Interaction in the Photosystem II Oxygen-Evolving Complex. Journal of the American Chemical Society, 1996, 118, 7638-7639.	6.6	123
175	55Mn ESE-ENDOR of a Mixed Valence Mn(III)Mn(IV) Complex: Comparison with the Mn Cluster of the Photosynthetic Oxygen-Evolving Complex. Journal of the American Chemical Society, 1995, 117, 11780-11789.	6.6	111
176	55Mn Electron Spin Echo ENDOR of Mn2+ Complexes. The Journal of Physical Chemistry, 1994, 98, 12871-12883.	2.9	52
177	Temperature-dependent pulsed electron paramagnetic resonance studies of the S2 state multiline signal of the photosynthetic oxygen-evolving complex Biochemistry, 1994, 33, 12072-12076.	1.2	59
178	Histidine at the catalytic site of the photosynthetic oxygen-evolving complex. Biochemical Society Transactions, 1994, 22, 343-347.	1.6	7
179	Sensitive pulsed EPR spectrometer with an 8–18 GHz frequency range. Review of Scientific Instruments, 1992, 63, 2187-2192.	0.6	57
180	The manganese site of the photosynthetic oxygen-evolving complex probed by EPR spectroscopy of oriented photosystem II membranes: the g = 4 and g = 2 multiline signals. Biochemistry, 1992, 31, 541-547.	1.2	92

	_	_	
			דדום(
IX.	Ι ΙΑνι		וואמ
	<i><i><i>u</i></i>, <i>u</i>, <i>u</i>, <i>u</i>, <i>u</i>, <i>u</i>, <i>u</i>, <i>u</i></i>		

#	Article	IF	CITATIONS
181	Electron spin echo envelope modulation spectroscopy supports the suggested coordination of two histidine ligands to the Rieske iron-sulfur centers of the cytochrome b6f complex on spinach and the cytochrome bc1 complexes of Rhodospirillum rubrum, Rhodobacter sphaeroides R-26, and bovine heart mitochondria. Biochemistry, 1991, 30, 1892-1901.	1.2	130
182	Ammonia binds to the catalytic manganese of the oxygen-evolving complex of photosystem II. Evidence by electron spin-echo envelope modulation spectroscopy. Journal of the American Chemical Society, 1989, 111, 3522-3532.	6.6	183
183	Current Models and Mechanism of Water Splitting. , 0, , 107-136.		4
184	Pulsed 1H and 55Mn ENDOR studies of dinuclear Mn(III)Mn(IV) model complexes. , 0, .		2

Pulsed 1H and 55Mn ENDOR studies of dinuclear Mn(III)Mn(IV) model complexes. , 0, .