Shou-Fu Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7606785/publications.pdf

Version: 2024-02-01

71102 106344 5,389 168 41 65 citations h-index g-index papers 170 170 170 743 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Initial–boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. Journal of Differential Equations, 2017, 262, 506-558.	2.2	277
2	The mixed coupled nonlinear SchrĶdinger equation on the half-line via the Fokas method. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160588.	2.1	134
3	On the Integrability of a Generalized Variableâ€Coefficient Forced Kortewegâ€de Vries Equation in Fluids. Studies in Applied Mathematics, 2014, 132, 212-246.	2.4	130
4	Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation. Applied Mathematics Letters, 2020, 100, 106056.	2.7	124
5	Dynamics of the breathers, rogue waves and solitary waves in the $(2+1)$ -dimensional Ito equation. Applied Mathematics Letters, 2017 , 68 , $40-47$.	2.7	116
6	Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. Journal of Mathematical Analysis and Applications, 2010, 371, 585-608.	1.0	115
7	Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear SchrĶdinger equation with time-periodic boundary condition. Proceedings of the American Mathematical Society, 2017, 146, 1713-1729.	0.8	113
8	Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear SchrĶdinger equation. Proceedings of the American Mathematical Society, 2018, 146, 3353-3365.	0.8	113
9	Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 395204.	2.1	98
10	On the integrability of a generalized variable-coefficient Kadomtsev–Petviashvili equation. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 055203.	2.1	97
11	Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation. Chaos, Solitons and Fractals, 2013, 47, 27-41.	5.1	96
12	Rogue waves, homoclinic breather waves and soliton waves for the <mml:math altimg="si18.gif" display="inline" id="mml18" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mn> B-type Kadomtsevâ€"Petviashvili equation. Applied Mathematics Letters, 2017, 65, 90-97.</mml:mn></mml:mrow></mml:mrow></mml:mrow></mml:math>	1 <i>2</i> †7 1 <i>2</i> †mml:m	ın \$4mml:mo:
13	Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation. Computers and Mathematics With Applications, 2018, 76, 179-186.	2.7	94
14	Solitary waves, homoclinic breather waves and rogue waves of the <mml:math altimg="si19.gif" display="inline" id="mml19" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mn> Hirota bilinear equation. Computers and Mathematics With Applications, 2018, 75, 957-964.</mml:mn></mml:mrow></mml:mrow></mml:mrow></mml:math>	1 <i>2¦</i> 7 1 <i><∤</i> mml:m	.n>4mml:mo;
15	Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations. Journal of Geometry and Physics, 2019, 146, 103508.	1.4	92
16	Characteristics of the solitary waves and rogue waves with interaction phenomena in a generalized (<mml:math)="" 0="" display="inline" etqq0="" id="mml22" rge<="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>BT /Overloo 2.7</td><td>ck 10 Tf 50 14 90</td></mml:math>	BT /Overloo 2.7	ck 10 Tf 50 14 90
17	Kadomtsev–Petviashvili equation. Applied Mathematics Letters, 2017, 72, 58-64. On periodic wave solutions with asymptotic behaviors to a (3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation in fluid dynamics. Computers and Mathematics With Applications, 2016, 72, 2486-2504.	2.7	88
18	BÃcklund transformation, infinite conservation laws and periodic wave solutions to a generalized (2+1)-dimensional Boussinesq equation. Nonlinear Analysis: Real World Applications, 2016, 31, 388-408.	1.7	85

#	Article	IF	CITATIONS
19	On integrability and quasi-periodic wave solutions to a (3+1)-dimensional generalized KdV-like model equation. Applied Mathematics and Computation, 2016, 283, 216-233.	2.2	75
20	On quasi-periodic waves and rogue waves to the $(4+1)$ -dimensional nonlinear Fokas equation. Journal of Mathematical Physics, 2018, 59, .	1.1	75
21	Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure and Applied Analysis, 2018, 17, 923-957.	0.8	73
22	On Lie symmetries, optimal systems and explicit solutions to the Kudryashov–Sinelshchikov equation. Applied Mathematics and Computation, 2016, 275, 345-352.	2.2	71
23	Rogue waves, brighta€ dark solitons and traveling wave solutions of the <mml:math altimg="si81.gif" display="inline" id="mml81" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn> generalized Kadomtsev†Petviashvili equation. Computers and Mathematics With Applications, 2018, 75,</mml:mn></mml:mo></mml:mrow></mml:math>	1 <i>ച്ച</i> ന്നസി:m	ın 71 mml:mo:
24	On the solitary waves, breather waves and rogue waves to a generalized (<mml:math) 0="" etqq0="" overloo<="" rgbt="" td="" tj=""><td>ck 10 Tf 50 2.7</td><td>) 552 Td (xm 70</td></mml:math)>	ck 10 Tf 50 2.7) 552 Td (xm 70
	Kadomtsevâ€"Petviashvili equation. Computers and Mathematics With Applications, 2017, 74, 556-563. On the Lie algebras, generalized symmetries and darboux transformations of the fifth-order		
25	evolution equations in shallow water. Chinese Annals of Mathematics Series B, 2015, 36, 543-560.	0.4	67
26	BÃcklund transformation, infinite conservation laws and periodic wave solutions of a generalized (3+1)-dimensional nonlinear wave in liquid with gas bubbles. Nonlinear Dynamics, 2016, 83, 1199-1215.	5.2	67
27	BÃcklund transformation, rogue wave solutions and interaction phenomena for a \$\$varvec{(3+1)}\$\$ (3 + 1) -dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dynamics, 2018, 92, 709-720.	5.2	66
28	Analysis on lump, lumpoff and rogue waves with predictability to the (2â€⁻+â€⁻1)-dimensional B-type Kadomtsev–Petviashvili equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2701-2708.	2.1	65
29	Characteristics of the breathers, rogue waves and solitary waves in a generalized (2+1)-dimensional Boussinesq equation. Europhysics Letters, 2016, 115, 10002.	2.0	64
30	On breather waves, rogue waves and solitary waves to a generalized (2+1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation. Communications in Nonlinear Science and Numerical Simulation, 2018, 62, 378-385.	3.3	63
31	Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear SchrĶdinger equation. Europhysics Letters, 2018, 123, 50005.	2.0	61
32	Characteristics of rogue waves on a periodic background for the Hirota equation. Wave Motion, 2020, 93, 102454.	2.0	60
33	Dynamics of the soliton waves, breather waves, and rogue waves to the cylindrical Kadomtsev-Petviashvili equation in pair-ion–electron plasma. Physics of Fluids, 2019, 31, .	4.0	56
34	Breather waves and rational solutions in the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Computers and Mathematics With Applications, 2019, 77, 715-723.	2.7	56
35	A kind of explicit Riemann theta functions periodic waves solutions for discrete soliton equations. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 173-186.	3.3	53
36	Quasi-periodic Waves and Solitary Waves to a Generalized KdV-Caudrey-Dodd-Gibbon Equation from Fluid Dynamics. Taiwanese Journal of Mathematics, 2016, 20, .	0.4	51

#	Article	IF	Citations
37	Lie symmetries and nonlocally related systems of the continuous and discrete dispersive long waves system by geometric approach. Journal of Nonlinear Mathematical Physics, 2015, 22, 180.	1.3	50
38	Rogue Waves and Their Dynamics on Bright-Dark Soliton Background of the Coupled Higher Order Nonlinear SchrĶdinger Equation. Journal of the Physical Society of Japan, 2019, 88, 074004.	1.6	50
39	Asymptotic behavior of a weakly dissipative modified two-component Dullin–Gottwald–Holm system. Applied Mathematics Letters, 2018, 83, 65-72.	2.7	47
40	Rational and semiâ€rational solutions of a nonlocal (2Â+Â1)â€dimensional nonlinear Schrödinger equation. Mathematical Methods in the Applied Sciences, 2019, 42, 6865-6877.	2.3	47
41	On symmetry-preserving difference scheme to a generalized Benjamin equation and third-order Burgers equation. Applied Mathematics Letters, 2015, 50, 146-152.	2.7	45
42	Bilinear formalism, lump solution, lumpoff and instanton/rogue wave solution of a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation. Nonlinear Dynamics, 2019, 95, 3005-3017.	5.2	43
43	Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation. Europhysics Letters, 2016, 114, 20003.	2.0	40
44	Quasiperiodic waves, solitary waves and asymptotic properties for a generalized (3Â+Â1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation. Nonlinear Dynamics, 2017, 88, 2265-2279.	5.2	40
45	Modulation instability analysis and soliton solutions of an integrable coupled nonlinear SchrĶdinger system. Nonlinear Dynamics, 2018, 94, 2749-2761.	5.2	40
46	Lump wave and hybrid solutions of a generalized $(3 + 1)$ -dimensional nonlinear wave equation in liquid with gas bubbles. Frontiers of Mathematics in China, 2019, 14, 631-643.	0.7	40
47	Lie Symmetry Analysis, Analytical Solutions, and Conservation Laws of the Generalised Whitham–Broer–Kaup–Like Equations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 72, 269-279.	1.5	39
48	Riemann–Hilbert problem and interactions of solitons in the â€component nonlinear Schrödinger equations. Studies in Applied Mathematics, 2022, 148, 577-605.	2.4	39
49	Nonlocal Symmetries, Conservation Laws and Interaction Solutions of the Generalised Dispersive Modified Benjamin–Bona–Mahony Equation. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2018, 73, 399-405.	1.5	38
50	Riemannâ€Hilbert approach for multisoliton solutions of generalized coupled fourthâ€order nonlinear Schrödinger equations. Mathematical Methods in the Applied Sciences, 2020, 43, 865-880.	2.3	36
51	Solitary Wave and Quasi-Periodic Wave Solutions to a (3+1)-Dimensional Generalized Calogero-Bogoyavlenskii-Schiff Equation. Advances in Applied Mathematics and Mechanics, 2018, 10, 948-977.	1.2	36
52	Riemann–Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions. Physica D: Nonlinear Phenomena, 2022, 432, 133162.	2.8	35
53	Soliton resolution for the complex short pulse equation with weighted Sobolev initial data in space-time solitonic regions. Journal of Differential Equations, 2022, 329, 31-88.	2.2	35
54	On the Quasi-Periodic Wave Solutions and Asymptotic Analysis to a (3+1)-Dimensional Generalized Kadomtsevâ€"Petviashvili Equation. Communications in Theoretical Physics, 2014, 62, 245-258.	2.5	34

#	Article	IF	Citations
55	Nonlocal Symmetries and Consistent Riccati Expansions of the (2+1)-Dimensional Dispersive Long Wave Equation. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 72, 425-431.	1.5	34
56	Characteristics of the solitary waves and lump waves with interaction phenomena in a (2Â+Â1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Nonlinear Dynamics, 2018, 93, 1841-1851.	, 5.2	34
57	Analytic solutions, Darboux transformation operators and supersymmetry for a generalized one-dimensional time-dependent SchrĶdinger equation. Applied Mathematics and Computation, 2012, 218, 7308-7321.	2.2	32
58	The <i>N</i> àê€coupled higherâ€order nonlinear Schrödinger equation: Riemannâ€Hilbert problem and multiâ€soliton solutions. Mathematical Methods in the Applied Sciences, 2020, 43, 2458-2472.	2.3	31
59	Infinite propagation speed of a weakly dissipative modified two-component Dullin–Gottwald–Holm system. Applied Mathematics Letters, 2019, 89, 1-7.	2.7	30
60	BÃcklund Transformations, Nonlocal Symmetries and Soliton–Cnoidal Interaction Solutions of the (2Â+Â1)-Dimensional Boussinesq Equation. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43, 141-155.	0.9	30
61	integrability, soliton solutions and modulation instability analysis of a <mmi:math altimg="si1.gif" display="inline" id="d1e526" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml:mro><mml< td=""><td>/₂:₁ml:mn></td><td>- 291ml:mo></td></mml<></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mro></mml:mrow></mml:mrow></mmi:math>	/ ₂:₁ ml:mn>	- 29 1ml:mo>
62	Applications, 2019, 77, 770-778. Nonlocal symmetries, conservation laws and interaction solutions for the classical Boussinesq–Burgers equation. Nonlinear Dynamics, 2019, 95, 273-291.	5.2	29
63	The \hat{a} , \hat{l} , dressing method and soliton solutions for the three-component coupled Hirota equations. Journal of Mathematical Physics, 2021, 62, .	1.1	29
64	Soliton Resolution for the Wadati–Konno–Ichikawa Equation with Weighted Sobolev Initial Data. Annales Henri Poincare, 2022, 23, 2611-2655.	1.7	29
65	Nonlocal Symmetries, Consistent Riccati Expansion, and Analytical Solutions of the Variant Boussinesq System. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 72, 655-663.	1.5	28
66	Nonlinear wave transitions and their mechanisms of (2+1)-dimensional Sawada–Kotera equation. Physica D: Nonlinear Phenomena, 2021, 427, 133002.	2.8	28
67	A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	2.1	27
68	On periodic wave solutions and asymptotic behaviors to a generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation. European Physical Journal Plus, 2016, 131, 1.	2.6	26
69	Lump-type solutions and interaction solutions in the (3 + 1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Analysis and Mathematical Physics, 2019, 9, 1511-1523.	1.3	26
70	The Dynamics of Lump, Lumpoff and Rogue Wave Solutions of (2+1)-Dimensional Hirota-Satsuma-Ito Equations. East Asian Journal on Applied Mathematics, 2020, 10, 243-255.	0.9	26
71	Lie symmetry analysis, conservation laws and explicit solutions for the time fractional Rosenau-Haynam equation. Waves in Random and Complex Media, 2017, 27, 308-324.	2.7	25
72	Lump solutions with interaction phenomena in the (2+1)-dimensional Ito equation. Modern Physics Letters B, 2018, 32, 1850104.	1.9	25

#	Article	IF	Citations
73	Conservation laws, bright matter wave solitons and modulational instability of nonlinear SchrĶdinger equation with time-dependent nonlinearity. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 3247-3257.	3.3	24
74	Lie symmetries, conservation laws and analytical solutions for two-component integrable equations. Chinese Journal of Physics, 2017, 55, 996-1010.	3.9	24
75	Some types of solutions and generalized binary Darboux transformation for the mKP equation with self-consistent sources. Journal of Mathematical Analysis and Applications, 2010, 366, 646-662.	1.0	22
76	Nonclassical analysis of the nonlinear Kompaneets equation. Journal of Engineering Mathematics, 2014, 84, 87-97.	1.2	22
77	On quasiperiodic wave solutions and integrability to a generalized \$\$varvec{(2+1)}\$\$ (2 + 1) -dimensional Korteweg–de Vries equation. Nonlinear Dynamics, 2015, 82, 2031-2049.	5.2	22
78	Lie Symmetry Analysis, Conservation Laws and Exact Power Series Solutions for Time-Fractional Fordy–Gibbons Equation. Communications in Theoretical Physics, 2016, 66, 321-329.	2.5	22
79	Breather waves, high-order rogue waves and their dynamics in the coupled nonlinear SchrĶdinger equations with alternate signs of nonlinearities. Europhysics Letters, 2019, 127, 50005.	2.0	22
80	On Bell polynomials approach to the integrability of a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Modern Physics Letters B, 2015, 29, 1550051.	1.9	21
81	Lie symmetry analysis, conservation laws and analytical solutions of the time-fractional thin-film equation. Computational and Applied Mathematics, 2018, 37, 6270-6282.	1.3	21
82	Lie symmetry analysis, conservation laws and analytic solutions of the time fractional Kolmogorov–Petrovskii–Piskunov equation. Chinese Journal of Physics, 2018, 56, 1734-1742.	3.9	20
83	Solitons to rogue waves transition, lump solutions and interaction solutions for the (3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation in fluid dynamics. International Journal of Computer Mathematics, 2019, 96, 1839-1848.	1.8	20
84	Darboux transformation and new periodic wave solutions of generalized derivative nonlinear Schr $ ilde{A}\P$ dinger equation. Physica Scripta, 2009, 80, 065013.	2.5	19
85	Lie symmetry analysis, conservation laws and analytical solutions of a time-fractional generalized KdV-type equation*. Journal of Nonlinear Mathematical Physics, 2017, 24, 516.	1.3	19
86	Quasi-periodic wave solutions, soliton solutions, and integrability to a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Waves in Random and Complex Media, 2016, 26, 444-457.	2.7	18
87	Inverse Scattering Transform and Soliton Classification of Higher-Order Nonlinear SchrĶdinger-Maxwell-Bloch Equations. Theoretical and Mathematical Physics(Russian Federation), 2020, 203, 709-725.	0.9	18
88	Integrable discretizations and soliton solutions of an Eckhaus–Kundu equation. Applied Mathematics Letters, 2021, 122, 107507.	2.7	18
89	Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV-Burgers equation. Theoretical and Mathematical Physics(Russian Federation), 2012, 170, 287-314.	0.9	17
90	Quasi-periodic wave solutions with asymptotic analysis to the Saweda-Kotera-Kadomtsev-Petviashvili equation. European Physical Journal Plus, 2015, 130, 1.	2.6	17

#	Article	lF	Citations
91	Lie Symmetries, Conservation Laws and Explicit Solutions for Time Fractional Rosenau–Haynam Equation. Communications in Theoretical Physics, 2017, 67, 157.	2.5	17
92	Initial Value Problem for the Pair Transition Coupled Nonlinear Schrödinger Equations via the Riemann–Hilbert Method. Complex Analysis and Operator Theory, 2020, 14, 1.	0.6	17
93	Formation, stability, and adiabatic excitation of peakons and double-hump solitons in parity-time-symmetric Dirac- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>l~</mml:mi><mml:mo>(<td>> < mml:mi</td><td>>x¹⁷mml:mi</td></mml:mo></mml:mrow></mml:math>	> < mml:mi	>x ¹⁷ mml:mi
94	Solitary wave, breather wave and rogue wave solutions of an inhomogeneous fifth-order nonlinear Schrodinger equation from Heisenberg ferromagnetism. Rocky Mountain Journal of Mathematics, 2019, 49, .	0.4	16
95	Data-driven rogue waves and parameters discovery in nearly integrable <mml:math altimg="si47.svg" display="inline" id="d1e2780" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:math> -symmetric	2.8	16
96	Consider the Constant of Nonisospectral Kadomtsev–Petviashvili Equation with the Two-Singular-Manifold Method. Journal of Nonlinear Mathematical Physics, 2010, 17, 491.	1.3	15
97	Analytic solutions and Darboux transformation to a new Hamiltonian lattice hierarchy. Modern Physics Letters B, 2016, 30, 1650100.	1.9	15
98	The Riemann-Hilbert approach for the focusing Hirota equation with single and double poles. Analysis and Mathematical Physics, $2021,11,1.$	1.3	15
99	On the breather waves, rogue waves and solitary waves to a generalized (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation. Filomat, 2018, 32, 4959-4969.	0.5	15
100	A hierarchy of nonlocal nonlinear evolution equations and <mml:math altimg="si6.svg" display="inline" id="d1e333" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mover accent="true"><mml:mrow><mml:mi>â^,</mml:mi></mml:mrow><mml:mrow><mml:mo>ì,,</mml:mo></mml:mrow><mml:mo>ì,,</mml:mo><mml:mo>ì,,</mml:mo><mml:mo>ì,,</mml:mo><mml:mo>ì,,</mml:mo><mml:mo>ì,,</mml:mo><mml:mo>ì,,</mml:mo><mml:mo>ì,,</mml:mo>>i,,<!--</td--><td>2.7 ow><td>14 nl:mover></td></td></mml:mover></mml:math>	2.7 ow> <td>14 nl:mover></td>	14 nl:mover>
101	method. Applied Mathematics Letters, 2021, 120, 107254. Differential transform method for solving solitary wave with discontinuity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3451-3454.	2.1	13
102	Lie Symmetry Analysis and Conservation Laws of a Generalized Time Fractional Foam Drainage Equation. Communications in Theoretical Physics, 2016, 66, 35-40.	2.5	13
103	Lie symmetry analysis, conservation laws, solitary and periodic waves for a coupled Burger equation. Superlattices and Microstructures, 2017, 101, 415-428.	3.1	13
104	Lump solutions and interaction phenomena of the (3 + 1)-dimensional nonlinear evolution equations. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 3417-3436.	2.8	13
105	Dynamics of kink solitary waves and lump waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation. International Journal of Computer Mathematics, 2020, 97, 2178-2190.	1.8	13
106	On Lie symmetries, exact solutions and integrability to the KdV-Sawada-Kotera-Ramani equation. European Physical Journal Plus, 2016, 131, 1.	2.6	12
107	Optical solitons, complexitons and power series solutions of a (2+1)-dimensional nonlinear SchrĶdinger equation. Modern Physics Letters B, 2018, 32, 1850336.	1.9	12
108	General lump solutions, lumpoff solutions, and rogue wave solutions with predictability for the (2+1)-dimensional Korteweg-de Vries equation. Computational and Applied Mathematics, 2019, 38, 1.	2.2	12

#	Article	IF	Citations
109	Lie point symmetries, conservation laws, and analytical solutions of a generalized time-fractional Sawada–Kotera equation. Waves in Random and Complex Media, 2019, 29, 509-522.	2.7	12
110	Blow-up phenomena of a weakly dissipative modified two-component Dullin–Gottwald–Holm system. Applied Mathematics Letters, 2020, 106, 106378.	2.7	12
111	The bound-state soliton solutions of a higher-order nonlinear SchrĶdinger equation for inhomogeneous Heisenberg ferromagnetic system. Nonlinear Dynamics, 2021, 104, 2639-2652.	5 . 2	12
112	On the integrability and quasi-periodic wave solutions of the Boussinesq equation in shallow water. European Physical Journal Plus, 2015, 130 , 1 .	2.6	11
113	Optical solitons, complexitons, Gaussian soliton and power series solutions of a generalized Hirota equation. Modern Physics Letters B, 2018, 32, 1850143.	1.9	11
114	Rogue waves, homoclinic breather waves and soliton waves for a (3 + 1)-dimensional non-integrable KdV-type equation. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 763-772.	2.8	11
115	Dynamics of Lump Solutions, Rogue Wave Solutions and Traveling Wave Solutions for a (3 +) Tj ETQq1 1 0.7843	14 rgBT /	Overlock 10
116	Stability analysis solutions, optical solitons, Gaussian solutions and traveling wave solutions of the nonlinear SchrĶdinger governing equation. Optik, 2018, 158, 391-398.	2.9	10
117	Stability analysis, solitary wave and explicit power series solutions of a $(2 + 1)$ -dimensional nonlinear Schr $ ilde{A}$ ¶dinger equation in a multicomponent plasma. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 1732-1748.	2.8	10
118	Dynamics of Solitary Waves and Periodic Waves in a $(3 + 1)$ -Dimensional Nonlinear Evolution Equation. East Asian Journal on Applied Mathematics, 2018, 8, 477-497.	0.9	10
119	Quasi-Periodic Solutions and Asymptotic Properties for the Isospectral BKP Equation. Communications in Theoretical Physics, 2014, 62, 17-25.	2.5	9
120	Mechanisms of nonlinear wave transitions in the $(2+1)$ -dimensional generalized breaking soliton equation. Nonlinear Dynamics, 2021, 105, 1753-1764.	5.2	9
121	On Differential form Method to Find Lie Symmetries of two Types of Toda Lattices. Reports on Mathematical Physics, 2014, 74, 323-337.	0.8	8
122	Lie symmetry analysis, conservation laws and analytical solutions for the constant astigmatism equation. Chinese Journal of Physics, 2017, 55, 1938-1952.	3.9	8
123	The modified high-order Haar wavelet scheme with Runge–Kutta method in the generalized Burgers–Fisher equation and the generalized Burgers–Huxley equation. Modern Physics Letters B, 2021, 35, 2150419.	1.9	8
124	Lie symmetry analysis, conservation laws and analytical solutions for chiral nonlinear Schr \tilde{A}^{\P} dinger equation in (2 + 1)-dimensions. Nonlinear Analysis: Modelling and Control, 2020, 25, .	1.6	7
125	Soliton solutions by Darboux transformation and some reductions for a new Hamiltonian lattice hierarchy. Physica Scripta, 2010, 82, 015008.	2.5	6
126	The lump, lumpoff and rouge wave solutions of a $(3+1)$ -dimensional generalized shallow water wave equation. Modern Physics Letters B, 2019, 33, 1950190.	1.9	6

#	Article	IF	Citations
127	General coupled nonlinear SchrĶdinger equation: Breather waves and rogue waves on a soliton background, and dynamics. Superlattices and Microstructures, 2019, 128, 83-91.	3.1	6
128	Riemann–Hilbert approach and multi-soliton solutions of a variable-coefficient fifth-order nonlinear Schrödinger equation with N distinct arbitrary-order poles. Modern Physics Letters B, 2021, 35, 2150194.	1.9	6
129	Characteristics of solitary waves, breather waves and hybrid waves to a new (3Â+Â1)-dimensional nonlinear evolution equation in a quantum magnetoplasma. Europhysics Letters, 2021, 135, 20003.	2.0	6
130	Riemann–Hilbert problem for the modified Landau–Lifshitz equation with nonzero boundary conditions. Theoretical and Mathematical Physics(Russian Federation), 2020, 205, 1611-1637.	0.9	6
131	Riemann-Hilbert method and multi-soliton solutions of an extended modified Korteweg-de Vries equation with N distinct arbitrary-order poles. Journal of Mathematical Analysis and Applications, 2022, 511, 126103.	1.0	6
132	Optical soliton solutions, periodic wave solutions and complexitons of the cubic Schrödinger equation with a bounded potential. Superlattices and Microstructures, 2018, 113, 510-518.	3.1	5
133	Characteristics of the lump, lumpoff and rouge wave solutions in a (3+1)-dimensional generalized potential Yu–Toda–Sasa–Fukuyama equation. Modern Physics Letters B, 2019, 33, 1950291.	1.9	5
134	Stability analysis, optical solitons and complexitons of the two-dimensional complex Ginzburg-Landau equation. Journal of Electromagnetic Waves and Applications, 2019, 33, 1224-1238.	1.6	5
135	An efficient onboard compression method for multispectral images using distributed post-transform in the wavelet domain in conjunction with a fast spectral decorrelator. Optical Review, 2019, 26, 247-261.	2.0	5
136	Riemann–Hilbert problem and dynamics of soliton solutions of the fifth-order nonlinear Schrödinger equation. Applied Mathematics Letters, 2022, 128, 107904.	2.7	5
137	Dynamics of lump solutions, lump-kink solutions and periodic lump solutions in a (3+1)-dimensional generalized Jimbo–Miwa equation. Waves in Random and Complex Media, 2021, 31, 293-304.	2.7	4
138	General high-order breather, lump, and semi-rational solutions to the (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation. Modern Physics Letters B, 2021, 35, 2150057.	1.9	4
139	Vector breather waves and higher-order rouge waves to the coupled higher-order nonlinear SchrĶdinger equations. International Journal of Computer Mathematics, 2021, 98, 2504-2513.	1.8	4
140	Riemann–Hilbert problem for the Kundu-type nonlinear Schrödinger equation with \$\$N\$\$ distinct arbitrary-order poles. Theoretical and Mathematical Physics(Russian Federation), 2021, 207, 415-433.	0.9	4
141	Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation. Communications on Pure and Applied Analysis, 2021, .	0.8	4
142	Inverse scattering transform for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Discrete and Continuous Dynamical Systems - Series B, 2022, 27, 4941.	0.9	4
143	An efficient method for measuring the internal parameters of optical cameras based on optical fibres. Scientific Reports, 2017, 7, 12479.	3.3	3
144	Lie symmetry analysis and different types of solutions to a generalized bidirectional sixth-order Sawada–Kotera equation. Chinese Journal of Physics, 2017, 55, 2236-2248.	3.9	3

#	Article	IF	CITATIONS
145	Solitary waves, rogue waves and homoclinic breather waves for a (2 + 1)-dimensional generalized Kadomtsev–Petviashvili equation. Modern Physics Letters B, 2017, 31, 1750281.	1.9	3
146	On the integrability and Riemann theta functions periodic wave solutions of the Benjamin Ono equation. Nonlinear Dynamics, 2018, 92, 235-246.	5.2	3
147	Stability analysis, soliton waves, rogue waves and interaction phenomena for the (3+1)-dimensional generalizedÂKadomtsev–Petviashvili equation. Modern Physics Letters B, 2018, 32, 1850345.	1.9	3
148	Characteristics of the breather waves, lump waves and semi-rational solutions in a generalized (2+1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation. Modern Physics Letters B, 2019, 33, 1950350.	1.9	3
149	Modulation instability analysis of the generalized nonlinear Schr \tilde{A} ¶dinger equation and its bright, dark and complexiton soliton solutions. Optik, 2019, 183, 381-388.	2.9	3
150	The solitary waves, quasi-periodic waves and integrability of a generalized fifth-order Korteweg-de Vries equation. Waves in Random and Complex Media, 2019, 29, 247-263.	2.7	3
151	THE BREATHER WAVE SOLUTIONS, M-LUMP SOLUTIONS AND SEMI-RATIONAL SOLUTIONS TO A (2+1)-DIMENSIONAL GENERALIZED KORTEWEG-DE VRIES EQUATION. Journal of Applied Analysis and Computation, 2020, 10, 118-130.	0.5	3
152	On the \$\$arpartial\$\$-problem and dressing method for the complex vector modified KdV equation. Theoretical and Mathematical Physics(Russian Federation), 2021, 209, 1579-1598.	0.9	3
153	CONSTRUCTING 2N-SOLITON PERIODIC WAVE SOLUTIONS FOR GENERALIZED DERIVATIVE NONLINEAR SCHR×DINGER EQUATION. International Journal of Modern Physics C, 2010, 21, 1149-1168.	1.7	2
154	Nonlocal symmetry and consistent Riccati expansion integrability of the $(1+1)$ -dimensional integrable nonlinear dispersive-wave system. Waves in Random and Complex Media, 2017, 27, 571-586.	2.7	2
155	Nonlocal symmetries, solitary waves and cnoidal periodic waves of the (2+1)-dimensional breaking soliton equation. Modern Physics Letters B, 2017, 31, 1750348.	1.9	2
156	Characteristics of solitary waves, quasiperiodic solutions, homoclinic breather solutions and rogue waves in the generalized variable-coefficient forced Kadomtsev–Petviashvili equation. Modern Physics Letters B, 2017, 31, 1750350.	1.9	2
157	Bright soliton solutions, power series solutions and travelling wave solutions of a (3+1)-dimensional modified Korteweg–de Vries–Kadomtsev–Petviashvili equation. Modern Physics Letters B, 2018, 32, 1850082.	1.9	2
158	Stability analysis solutions and optical solitons in extended nonlinear Schr \tilde{A} ¶dinger equation with higher-order odd and even terms. Superlattices and Microstructures, 2018, 113, 726-736.	3.1	2
159	Lie symmetry analysis, conservation laws and analytical solutions for a generalized time-fractional modified KdV equation. Waves in Random and Complex Media, 2019, 29, 456-476.	2.7	2
160	Hyperelliptic function solutions with finite genus "¡½";½";½";½"½"½½";½"2½"½"2½" of coupled nonlinear differential equation Journal of Nonlinear Mathematical Physics, 2013, 20, 245.	ns* 1.3	1
161	On quasi-periodic wave solutions and asymptotic behaviors to a (2 + 1)-dimensional generalized variable-coefficient Sawada–Kotera equation. Modern Physics Letters B, 2015, 29, 1550101.	1.9	1
162	Quasi-periodic wave solutions and asymptotic properties for a fifth-order Korteweg–de Vries type equation. Modern Physics Letters B, 2016, 30, 1650223.	1.9	1

#	Article	IF	CITATIONS
163	The solitary waves, breather waves and rogue waves for a generalized nonlinear equation. Modern Physics Letters B, 2019, 33, 1950353.	1.9	1
164	Characteristics of the breather waves, rogue waves and solitary waves in an extended $(3\hat{\epsilon}_{-})$ -dimensional Kadomtsev $\hat{\epsilon}_{-}$ Petviashvili equation. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2964-2976.	2.8	1
165	Quasi-periodic wave solutions and asymptotic properties to an extended Korteweg–de Vries equation from fluid dynamics. Modern Physics Letters B, 2016, 30, 1550271.	1.9	O
166	Bright-dark solitary waves, complexitons, Guassian solitons, and traveling wave solitons of the second-order non-linear Schr $ ilde{A}^{\dagger}$ dinger equation with spatial and temporal dispersion. Journal of Electromagnetic Waves and Applications, 2018, 32, 504-515.	1.6	0
167	Riemann–Hilbert problem for the generalized modified Korteweg–de Vries equation with N distinct arbitrary-order poles. Modern Physics Letters B, 2021, 35, 2150233.	1.9	0
168	Lie symmetries, group classification and conserved quantities of dispersionless Manakov–Santini system in (2+1)-dimension. Indian Journal of Pure and Applied Mathematics, 0, , .	0.5	0