
Carlos M R Abreu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7606778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inorganic Sulfites: Efficient Reducing Agents and Supplemental Activators for Atom Transfer Radical Polymerization. ACS Macro Letters, 2012, 1, 1308-1311.	2.3	95
2	Ambient temperature rapid SARA ATRP of acrylates and methacrylates in alcohol–water solutions mediated by a mixed sulfite/Cu(ii)Br2 catalytic system. Polymer Chemistry, 2013, 4, 5629.	1.9	70
3	Reversible Addition–Fragmentation Chain Transfer Polymerization of Vinyl Chloride. Macromolecules, 2012, 45, 2200-2208.	2.2	61
4	Polyacrylonitrile- <i>b</i> -poly(butyl acrylate) Block Copolymers as Precursors to Mesoporous Nitrogen-Doped Carbons: Synthesis and Nanostructure. Macromolecules, 2017, 50, 2759-2767.	2.2	53
5	Aqueous SARA ATRP using inorganic sulfites. Polymer Chemistry, 2017, 8, 375-387.	1.9	45
6	Poly(vinyl chloride): current status and future perspectives via reversible deactivation radical polymerization methods. Progress in Polymer Science, 2018, 87, 34-69.	11.8	44
7	Sulfolane: an Efficient and Universal Solvent for Copper-Mediated Atom Transfer Radical (co)Polymerization of Acrylates, Methacrylates, Styrene, and Vinyl Chloride. ACS Macro Letters, 2014, 3, 858-861.	2.3	37
8	Accelerated Ambientâ€Temperature ATRP of Methyl Acrylate in Alcohol–Water Solutions with a Mixed Transitionâ€Metal Catalyst System. Macromolecular Chemistry and Physics, 2012, 213, 1677-1687.	1.1	34
9	Nitroxide-Mediated Polymerization of Vinyl Chloride at Low Temperature: Kinetic and Computational Studies. Macromolecules, 2016, 49, 490-498.	2.2	34
10	Getting faster: low temperature copper-mediated SARA ATRP of methacrylates, acrylates, styrene and vinyl chloride in polar media using sulfolane/water mixtures. RSC Advances, 2016, 6, 9598-9603.	1.7	33
11	Thiourea Dioxide As a Green and Affordable Reducing Agent for the ARGET ATRP of Acrylates, Methacrylates, Styrene, Acrylonitrile, and Vinyl Chloride. ACS Macro Letters, 2019, 8, 315-319.	2.3	31
12	Cyclopentyl methyl ether: A new green coâ€solvent for supplemental activator and reducing agent atom transfer radical polymerization. Journal of Polymer Science Part A, 2015, 53, 2722-2729.	2.5	27
13	Synergistic Effect of 1-Butyl-3-methylimidazolium Hexafluorophosphate and DMSO in the SARA ATRP at Room Temperature Affording Very Fast Reactions and Polymers with Very Low Dispersity. ACS Macro Letters, 2014, 3, 544-547.	2.3	26
14	Mechanism of supplemental activator and reducing agent atom transfer radical polymerization mediated by inorganic sulfites: experimental measurements and kinetic simulations. Polymer Chemistry, 2017, 8, 6506-6519.	1.9	25
15	Cyclopentyl methyl ether as a green solvent for reversible-addition fragmentation chain transfer and nitroxide-mediated polymerizations. RSC Advances, 2016, 6, 7495-7503.	1.7	21
16	Passivation of the TiO ₂ Surface and Promotion of N719 Dye Anchoring with Poly(4-vinylpyridine) for Efficient and Stable Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 5981-5990.	3.2	14
17	Efficient internal plasticization of poly(vinyl chloride) via free radical copolymerization of vinyl chloride with an acrylate bearing a triazole phthalate mimic. Polymer, 2020, 196, 122473.	1.8	13
18	Polymerization of Vinyl Chloride at Ambient Temperature Using Macromolecular Design via the Interchange of Xanthate: Kinetic and Computational Studies. Macromolecules, 2020, 53, 190-202.	2.2	12

#	Article	IF	CITATIONS
19	Under pressure: electrochemically-mediated atom transfer radical polymerization of vinyl chloride. Polymer Chemistry, 2020, 11, 6745-6762.	1.9	11
20	Selective separation of Cr(III) and Fe(III) from liquid effluents using a chelating resin. Water Science and Technology, 2012, 66, 1968-1976.	1.2	8
21	Reversible Deactivation Radical Polymerization of Vinyl Chloride. ACS Symposium Series, 2018, , 227-261.	0.5	4
22	Preparation of nonmigratory flexible poly(vinyl chloride)-b-poly(n-butyl acrylate)-b-poly(vinyl) Tj ETQqO O O rgBT /G Functional Polymers, 2022, 170, 105138.	Overlock 1 2.0	0 Tf 50 627 ⁻ 4
23	Catalytic Halogen Exchange in Supplementary Activator and Reducing Agent Atom Transfer Radical Polymerization for the Synthesis of Block Copolymers. Macromolecular Rapid Communications, 2021, 42, e2000532.	2.0	3