
Horacio D. Moya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7606537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anticoagulant Activity of Crude and Phenolic Extracts of Dalbergia ecastaphyllum (L.) Taub. Dried Leaves. Pharmacognosy Research (discontinued), 2021, 13, 121-128.	0.6	0
2	Calculating the Equilibrium Constants for All Monoazide Lanthanide Complexes in Aqueous Solution Based on the Formation of Eu(III)/Nâ^ 3. Journal of Transition Metal Complexes, 2020, 3, 1-6.	0.5	0
3	A Procedure for Assessment of the Reducing Capacity of Plants-Derived Beverages Based on the Formation of the Fell/2,2'-Bipyridine Complex. Journal of the Brazilian Chemical Society, 2019, , .	0.6	1
4	Method for quantification of antioxidant capacity of processed fruit juices exploring the formation of the Fe(II)/3-hydroxy-4-nitroso-2,7-naphthalenedisulfonic complex. Canadian Journal of Chemistry, 2019, 97, 61-66.	1.1	1
5	Assessment of the reducing capacity of processed fruit juices with the copper(I)/4,4′-dicarboxy-2,2′-biquinoline complexes. Journal of Food Science and Technology, 2018, 55, 1331-1338.	2.8	0
6	Study of DNA damage caused by dipyrone in presence of some transition metal ions. Saudi Pharmaceutical Journal, 2017, 25, 961-966.	2.7	4
7	The Evaluation of Reduction of Fe(III) in 3â€Hydroxyâ€4â€Nitrosoâ€2,7â€Naphthalene Disulphonic Medium as an Alternative Ferric Reducing Activity Power Assay. Phytochemical Analysis, 2015, 26, 119-126.	2.4	7
8	A Comprehensive Study of the Use of Cu(I)/4,4'-Dicarboxy-2,2'-biquinoline Complexes to Measure the Total Reducing Capacity: Application in Herbal Extracts. Molecules, 2015, 20, 22411-22421.	3.8	9
9	Antioxidant Activity and Polyphenol Content of Some Brazilian Medicinal Plants Exploiting the Formation of the Fe(II)/2,2′-bipyridine Complexes. Natural Product Communications, 2015, 10, 1934578X1501001.	0.5	2
10	Montrichardia linifera (Araceae) biological potential, phytochemical prospection and polyphenol content. Universitas Scientiarum, 2014, 19, .	0.4	2
11	A critical study of use of the Fe(II)/3-hydroxy-4-nitroso-2,7-naphthalenedisulfonic acid complexes in the quantification of polyphenols in medicinal plants. Food Chemistry, 2013, 138, 1325-1332.	8.2	11
12	A new method for quantification of total polyphenol content in medicinal plants based on the reduction of Fe(III)/1,10-phenanthroline complexes. Advances in Biological Chemistry, 2013, 03, 525-535.	0.6	13
13	Modified CUPRAC spectrophotometric quantification of total polyphenol content in beer samples using Cu(II)/neocuproine complexes. Journal of Food Composition and Analysis, 2012, 28, 126-134.	3.9	11
14	Quantification of some nonsteroidal anti-inflammatory drugs as reducing agents of Cu(ii)/4,4′-dicarboxy-2,2′-biquinoline complexes in cationic micellar medium. Analytical Methods, 2011, 3, 1637.	2.7	6
15	The reduction of Cu(II)/neocuproine complexes by some polyphenols: Total polyphenols determination in wine samples. Food Chemistry, 2011, 126, 679-686.	8.2	18
16	Effect of some antioxidants on oxidative DNA damage induced by autoxidation of microquantities of sulfite in the presence of Ni(II)/Gly–Gly–L–His. Journal of Coordination Chemistry, 2010, 63, 2450-2460.	2.2	4
17	Determination of diltiazem based on the reduction of Cu(II)–BCA complexes in micellar medium. Canadian Journal of Chemistry, 2010, 88, 533-539.	1.1	9
18	Oxidative DNA damage induced by S(IV) in the presence of Cu(II) and Cu(I) complexes. Journal of the Brazilian Chemical Society, 2009, 20, 1302-1312.	0.6	12

HORACIO D. MOYA

#	Article	IF	CITATIONS
19	Analysis of the Polyphenols Content in Medicinal Plants Based on the Reduction of Cu(II)/Bicinchoninic Complexes. Journal of Agricultural and Food Chemistry, 2009, 57, 11061-11066.	5.2	28
20	A multicommuted flow-system for spectrophotometric determination of tannin exploiting the Cu(I)/BCA complex formation. Microchemical Journal, 2008, 88, 21-25.	4.5	21
21	Kinetic studies of the oxidation of L-ascorbic acid by tris(oxalate)cobaltate in the presence of CDTA metal ion complexes. Journal of the Brazilian Chemical Society, 2006, 17, 364-368.	0.6	18
22	ON THE INTERACTION BETWEEN AZIDE AND MANGANESE IONS AT SEVERAL OXIDATION STATES. Spectroscopy Letters, 2001, 34, 537-547.	1.0	2
23	THE INTERACTION OF 2-AMINO-2-HYDROXYMETHYL-1,3-PROPANEDIOL WITH COBALT(II) AND MANGANESE(II) IONS. Journal of Coordination Chemistry, 2000, 49, 251-259.	2.2	5
24	A Further Demonstration of Sulfite-Induced Redox Cycling of Metal Ions Initiated by Shaking. Journal of Chemical Education, 1999, 76, 930.	2.3	18
25	Kinetic of Copper(III)/(II) Tetraglycine Reactions with Sulfite. Analytical Potentialities. Spectroscopy Letters, 1998, 31, 1495-1512.	1.0	7
26	New procedures for the preparation of [Mo3S4(H2O)9]4+, [Mo4S4(H2O)12]5+ and [Mo7S8(H2O)18]8+ and their Se analogues: redox and substitution studies on the double cube [Mo7S8(H2O)18]8+. Journal of the Chemical Society Dalton Transactions, 1997, , 1863-1870.	1.1	30
27	The stabilization of managese(III) by azide ions in aqueous solution. Talanta, 1997, 44, 797-803.	5.5	8
28	Study of complex formation in the manganese(II)/azide system. Talanta, 1996, 43, 67-72.	5.5	8
29	A comparative study of spectrophotometric assays based on the formation of iron(II)-complexes to determine the reduction capacity of phenol derivatives. International Journal of Environmental Analytical Chemistry, 0, , 1-14.	3.3	1
30	DNA damage in a solution containing copper(II) ions and ascorbic acid: Effect of the presence of sulfite. Brazilian Journal of Pharmaceutical Sciences, 0, 57, .	1.2	1