
Max D Cooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7606328/publications.pdf

Version: 2024-02-01

MAY D COOPER

#	Article	IF	CITATIONS
1	Identification of Glycan-Specific Variable Lymphocyte Receptors Using Yeast Surface Display and Glycan Microarrays. Methods in Molecular Biology, 2022, 2421, 73-89.	0.4	4
2	Unraveling the Arthus Mystery: Fc Receptors and the Holy Grail of Inflammation. Journal of Immunology, 2022, 208, 1517-1518.	0.4	1
3	Novel lamprey antibody recognizes terminal sulfated galactose epitopes on mammalian glycoproteins. Communications Biology, 2021, 4, 674.	2.0	13
4	Which came first, T cells or B cells?. Nature Reviews Immunology, 2021, 21, 616-617.	10.6	0
5	Evolution of variable lymphocyte receptor B antibody loci in jawless vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
6	Development of smart anti-glycan reagents using immunized lampreys. Communications Biology, 2020, 3, 91.	2.0	27
7	Ancient BCMA-like Genes Herald B Cell Regulation in Lampreys. Journal of Immunology, 2019, 203, 2909-2916.	0.4	3
8	VLR Recognition of TLR5 Expands the Molecular Characterization of Protein Antigen Binding by Non-Ig-based Antibodies. Journal of Molecular Biology, 2018, 430, 1350-1367.	2.0	12
9	Evolution of Alternative Adaptive Immune Systems in Vertebrates. Annual Review of Immunology, 2018, 36, 19-42.	9.5	92
10	A tyrosine sulfation–dependent HLA-I modification identifies memory B cells and plasma cells. Science Advances, 2018, 4, eaar7653.	4.7	13
11	Structural Insights into VLR Fine Specificity for Blood Group Carbohydrates. Structure, 2017, 25, 1667-1678.e4.	1.6	27
12	Crystal structure of an anti-idiotype variable lymphocyte receptor. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 682-687.	0.4	3
13	Leucine-rich-repeat-containing variable lymphocyte receptors as modules to target plant-expressed proteins. Plant Methods, 2017, 13, 29.	1.9	15
14	Characterization of Lamprey BAFF-like Gene: Evolutionary Implications. Journal of Immunology, 2016, 197, 2695-2703.	0.4	33
15	The evolution of innate lymphoid cells. Nature Immunology, 2016, 17, 790-794.	7.0	140
16	Identification of human plasma cells with a lamprey monoclonal antibody. JCI Insight, 2016, 1, .	2.3	21
17	Evolution of two prototypic T cell lineages. Cellular Immunology, 2015, 296, 87-94.	1.4	25
18	The early history of B cells. Nature Reviews Immunology, 2015, 15, 191-197.	10.6	160

2

MAX D COOPER

#	Article	IF	CITATIONS
19	Characterization of Lamprey IL-17 Family Members and Their Receptors. Journal of Immunology, 2015, 195, 5440-5451.	0.4	56
20	Selection of the lamprey VLRC antigen receptor repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14834-14839.	3.3	30
21	Genomic donor cassette sharing during <i>VLRA</i> and <i>VLRC</i> assembly in jawless vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14828-14833.	3.3	18
22	Evolutionary implications of a third lymphocyte lineage in lampreys. Nature, 2013, 501, 435-438.	13.7	180
23	Chronic Lymphocytic Leukemia Monitoring with a Lamprey Idiotope-Specific Antibody. Cancer Immunology Research, 2013, 1, 223-228.	1.6	14
24	Organization of lamprey <i>variable lymphocyte receptor C</i> locus and repertoire development. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6043-6048.	3.3	49
25	Definition of a third <i>VLR</i> gene in hagfish. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15013-15018.	3.3	53
26	Immune Related Genes Underpin the Evolution of Adaptive Immunity in Jawless Vertebrates. Current Genomics, 2012, 13, 86-94.	0.7	11
27	Purification and identification of cell surface antigens using lamprey monoclonal antibodies. Journal of Immunological Methods, 2012, 386, 43-49.	0.6	26
28	VLR-Based Adaptive Immunity. Annual Review of Immunology, 2012, 30, 203-220.	9.5	217
29	Variable Lymphocyte Receptor Recognition of the Immunodominant Glycoprotein of Bacillus anthracis Spores. Structure, 2012, 20, 479-486.	1.6	47
30	The Evolution of Adaptive Immunity in Vertebrates. Advances in Immunology, 2011, 109, 125-157.	1.1	158
31	A thymus candidate in lampreys. Nature, 2011, 470, 90-94.	13.7	175
32	How did our complex immune system evolve?. Nature Reviews Immunology, 2010, 10, 2-3.	10.6	61
33	A Life of Adventure in Immunobiology. Annual Review of Immunology, 2010, 28, 1-19.	9.5	24
34	Inhibitory signaling potential of a TCRâ€like molecule in lamprey. European Journal of Immunology, 2009, 39, 571-579.	1.6	11
35	Dual nature of the adaptive immune system in lampreys. Nature, 2009, 459, 796-801.	13.7	296
36	Inhibition of immune cell function. Immunological Reviews, 2008, 224, 7-10.	2.8	6

MAX D COOPER

#	Article	IF	CITATIONS
37	Antibody responses of variable lymphocyte receptors in the lamprey. Nature Immunology, 2008, 9, 319-327.	7.0	151
38	Structure and specificity of lamprey monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2040-2045.	3.3	140
39	Antigen Recognition by Variable Lymphocyte Receptors. Science, 2008, 321, 1834-1837.	6.0	163
40	The Evolution of Adaptive Immune Systems. Cell, 2006, 124, 815-822.	13.5	642
41	Variable domains and a VpreB-like molecule are present in a jawless vertebrate. Immunogenetics, 2005, 56, 924-929.	1.2	31
42	Diversity and Function of Adaptive Immune Receptors in a Jawless Vertebrate. Science, 2005, 310, 1970-1973.	6.0	291
43	Variable lymphocyte receptors in hagfish. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9224-9229.	3.3	200
44	Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature, 2004, 430, 174-180.	13.7	592
45	Prototypic T cell receptor and CD4-like coreceptor are expressed by lymphocytes in the agnathan sea lamprey. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13273-13278.	3.3	128
46	Isolation and characterization of lymphocyte-like cells from a lamprey. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14350-14355.	3.3	133
47	Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14356-14361.	3.3	133
48	Exploring lymphocyte differentiation pathways. Immunological Reviews, 2002, 185, 175-185.	2.8	28
49	B lymphocyte migration to the bone marrow of humans is not random. , 1999, 18, 223-231.		4
50	The enigmatic role of glutamyl aminopeptidase (BP-1/6C3 antigen) in immune system development. Immunological Reviews, 1998, 161, 71-77.	2.8	17
51	Aberrations of the B-Cell Receptor B29 (CD79b) Gene in Chronic Lymphocytic Leukemia. Blood, 1997, 90, 1387-1394.	0.6	82
52	An amphibian CD3 homologue of the mammalian CD3 γ and δ genes. European Journal of Immunology, 1997, 27, 1640-1647.	1.6	53
53	Aberrations of the B-Cell Receptor B29 (CD79b) Gene in Chronic Lymphocytic Leukemia. Blood, 1997, 90, 1387-1394.	0.6	7
54	γδT cells are secondary participants in acute graft-versus-host reactions initiated by CD4+ αβT cells. European Journal of Immunology, 1996, 26, 420-427.	1.6	32

MAX D COOPER

#	Article	IF	CITATIONS
55	Expression of an avian CD6 candidate is restricted to αβ T cells, splenic CD8+ γδ T cells and embryonic natural killer cells. European Journal of Immunology, 1996, 26, 1743-1747.	1.6	28
56	Characterization of avian natural killer cells and their intracellular CD3 protein complex. European Journal of Immunology, 1994, 24, 1685-1691.	1.6	96
57	Growth requirements for avian γδT cells include exogenous cytokines, receptor ligation and in vivo priming. European Journal of Immunology, 1993, 23, 2230-2236.	1.6	53
58	Migration patterns of thymus-derived γδT cells during chicken development. European Journal of Immunology, 1993, 23, 2545-2550.	1.6	30
59	Widespread tissue distribution of aminopeptidase A, an evolutionarily conserved ectoenzyme recognized by the BPâ€1 antibody. Tissue Antigens, 1993, 42, 488-496.	1.0	46
60	Genetic and immunologic analysis of a family containing five patients with common-variable immune deficiency or selective IgA deficiency. Journal of Clinical Immunology, 1992, 12, 406-414.	2.0	47
61	Differential expression of two t cell receptors, tcr1 and tcr2, on chicken lymphocytes. European Journal of Immunology, 1988, 18, 539-544.	1.6	189
62	Immunoglobulin heavy-chain switching in pre-B leukaemias. Nature, 1983, 301, 340-342.	13.7	31
63	The Biologic Perturbations of Persistent Embryonic Mumps Virus Infection. Pediatric Research, 1973, 7, 541-552.	1.1	12