Anthony G Gallagher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7606170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Virtual Reality Training Improves Operating Room Performance. Annals of Surgery, 2002, 236, 458-464.	2.1	2,315
2	Virtual Reality Simulation for the Operating Room. Annals of Surgery, 2005, 241, 364-372.	2.1	831
3	Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. American Journal of Surgery, 2007, 193, 797-804.	0.9	560
4	Fundamental principles of validation, and reliability: rigorous science for the assessment of surgical education and training. Surgical Endoscopy and Other Interventional Techniques, 2003, 17, 1525-1529.	1.3	339
5	An Ergonomic Analysis of the Fulcrum Effect in the Acquisition of Endoscopic Skills. Endoscopy, 1998, 30, 617-620.	1.0	260
6	Virtual reality as a metric for the assessment of laparoscopic psychomotor skills. Surgical Endoscopy and Other Interventional Techniques, 2002, 16, 1746-1752.	1.3	229
7	Virtual Reality Training in Laparoscopic Surgery: A Preliminary Assessment of Minimally Invasive Surgical Trainer Virtual Reality (MIST VR). Endoscopy, 1999, 31, 310-313.	1.0	221
8	Objective Psychomotor Skills Assessment of Experienced, Junior, and Novice Laparoscopists with Virtual Reality. World Journal of Surgery, 2001, 25, 1478-1483.	0.8	213
9	Approval of Virtual Reality Training for Carotid Stenting. JAMA - Journal of the American Medical Association, 2004, 292, 3024.	3.8	186
10	Virtual reality training for the operating room and cardiac catheterisation laboratory. Lancet, The, 2004, 364, 1538-1540.	6.3	168
11	A Proficiency-Based Progression Training Curriculum Coupled With a Model Simulator Results in the Acquisition of a Superior Arthroscopic Bankart SkillÂSet. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2015, 31, 1854-1871.	1.3	161
12	Prospective, Randomized, Double-Blind Trial of Curriculum-Based Training for Intracorporeal Suturing and Knot Tying. Journal of the American College of Surgeons, 2008, 207, 560-568.	0.2	159
13	Construct validation of the ProMIS simulator using a novel laparoscopic suturing task. Surgical Endoscopy and Other Interventional Techniques, 2005, 19, 1227-1231.	1.3	147
14	Discriminative validity of the Minimally Invasive Surgical Trainer in Virtual Reality (MIST-VR) using criteria levels based on expert performance. Surgical Endoscopy and Other Interventional Techniques, 2004, 18, 660-665.	1.3	138
15	Learning Curves and Reliability Measures for Virtual Reality Simulation in the Performance Assessment of Carotid Angiography. Journal of the American College of Cardiology, 2006, 47, 1796-1802.	1.2	136
16	Surgical competence and surgical proficiency: definitions, taxonomy, and metrics. Journal of the American College of Surgeons, 2003, 196, 933-937.	0.2	133
17	Evaluation of structured and quantitative training methods for teaching intracorporeal knot tying. Surgical Endoscopy and Other Interventional Techniques, 2002, 16, 130-137.	1.3	127
18	Prospective, Randomized Assessment of Transfer of Training (ToT) and Transfer Effectiveness Ratio (TER) of Virtual Reality Simulation Training for Laparoscopic Skill Acquisition. Annals of Surgery, 2013, 257, 1025-1031.	2.1	124

ANTHONY G GALLAGHER

#	Article	IF	CITATIONS
19	Proving the Effectiveness of the Fundamentals of Robotic Surgery (FRS) Skills Curriculum. Annals of Surgery, 2020, 272, 384-392.	2.1	118
20	Virtual reality training leads to faster adaptation to the novel psychomotor restrictions encountered by laparoscopic surgeons. Surgical Endoscopy and Other Interventional Techniques, 2001, 15, 1080-1084.	1.3	112
21	Psychomotor skills assessment in practicing surgeons experienced in performing advanced laparoscopic procedures. Journal of the American College of Surgeons, 2003, 197, 479-488.	0.2	111
22	Experienced Laparoscopic Surgeons are Automated to the "Fulcrum Effect― An Ergonomic Demonstration. Endoscopy, 1999, 31, 365-369.	1.0	107
23	Clinical competence statement on carotid stenting: Training and credentialing for carotid stenting—multispecialty consensus recommendations. Journal of the American College of Cardiology, 2005, 45, 165-174.	1.2	99
24	PicSOr: An objective test of perceptual skill that predicts laparoscopic technical skill in three initial studies of laparoscopopic performance. Surgical Endoscopy and Other Interventional Techniques, 2003, 17, 1468-1471.	1.3	90
25	A comparison between randomly alternating imaging, normal laparoscopic imaging, and virtual reality training in laparoscopic psychomotor skill acquisition. American Journal of Surgery, 2000, 180, 208-211.	0.9	78
26	Construct validation of a novel hybrid virtual-reality simulator for training and assessing laparoscopic colectomy; results from the first course for experienced senior laparoscopic surgeons. Surgical Endoscopy and Other Interventional Techniques, 2008, 22, 2301-2309.	1.3	73
27	Role and feasibility of psychomotor and dexterity testing in selection for surgical training. ANZ Journal of Surgery, 2009, 79, 108-113.	0.3	73
28	Attempted establishment of proficiency levels for laparoscopic performance on a national scale using simulation: the results from the 2004 SAGES Minimally Invasive Surgical Trainer—Virtual Reality (MIST-VR) learning center study. Surgical Endoscopy and Other Interventional Techniques, 2007, 21, 5-10.	1.3	72
29	Objective psychomotor skills assessment of experienced and novice flexible endoscopists with a virtual reality simulator. Journal of Gastrointestinal Surgery, 2003, 7, 871-878.	0.9	67
30	Analysis of errors in laparoscopic surgical procedures. Surgical Endoscopy and Other Interventional Techniques, 2004, 18, 592-595.	1.3	67
31	Metric Development for an Arthroscopic Bankart Procedure: Assessment of Face and Content Validity. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2015, 31, 1430-1440.	1.3	63
32	Objective Assessment of Knot-Tying Proficiency With the Fundamentals of Arthroscopic Surgery Training Program Workstation and Knot Tester. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2015, 31, 1872-1879.	1.3	63
33	Perceptual, visuospatial, and psychomotor abilities correlate with duration of training required on a virtual-reality flexible endoscopy simulator. American Journal of Surgery, 2006, 192, 379-384.	0.9	62
34	Utilising the Delphi Process to Develop a Proficiency-based Progression Train-the-trainer Course for Robotic Surgery Training. European Urology, 2019, 75, 775-785.	0.9	62
35	Prospective, randomised and blinded comparison of proficiency-based progression full-physics virtual reality simulator training versus invasive vascular experience for learning carotid artery angiography by very experienced operators. BMJ Simulation and Technology Enhanced Learning, 2016, 2, 1-5.	0.7	61
36	A Systematic Review and Meta-analysis on the Impact of Proficiency-based Progression Simulation Training on Performance Outcomes. Annals of Surgery, 2021, 274, 281-289.	2.1	55

ANTHONY G GALLAGHER

#	Article	IF	CITATIONS
37	The effect of escalating feedback on the acquisition of psychomotor skills for laparoscopy. Surgical Endoscopy and Other Interventional Techniques, 2007, 21, 220-224.	1.3	53
38	Prospective, Randomized Assessment of the Acquisition, Maintenance, and Loss of Laparoscopic Skills. Annals of Surgery, 2012, 256, 387-393.	2.1	53
39	Do we see what we think we see? The complexities of morphological assessment. Journal of Pathology, 2009, 218, 285-291.	2.1	52
40	Assessing computerized eye tracking technology for gaining insight into expert interpretation of the 12-lead electrocardiogram: an objective quantitative approach. Journal of Electrocardiology, 2014, 47, 895-906.	0.4	51
41	The Bankart Performance Metrics Combined With a Shoulder Model Simulator Create a Precise and Accurate Training Tool for Measuring Surgeon Skill. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2015, 31, 1639-1654.	1.3	51
42	Real-Time Objective Assessment of Knot Quality With a Portable Tensiometer Is Superior to Execution Time for Assessment of Laparoscopic Knot-Tying Performance. Surgical Innovation, 2005, 12, 233-237.	0.4	50
43	Fundamentals of Surgical Simulation. , 2012, , .		50
44	Effects of a Twentyâ€Four Hour Call Period on Resident Performance During Simulated Endoscopic Sinus Surgery in an Accreditation Council for Graduate Medical Education–Compliant Training Program. Laryngoscope, 2005, 115, 143-146.	1.1	47
45	Video-assisted surgery represents more than a loss of three-dimensional vision. American Journal of Surgery, 2005, 189, 76-80.	0.9	47
46	Optimising surgical training: use of feedback to reduce errors during a simulated surgical procedure. Postgraduate Medical Journal, 2011, 87, 524-528.	0.9	47
47	Factors influencing microsurgical skill acquisition during a dedicated training course. Microsurgery, 2012, 32, 649-656.	0.6	45
48	The effects of varying auditory input on schizophrenic hallucinations: A replication. The British Journal of Medical Psychology, 1994, 67, 67-75.	0.6	44
49	NOVEL METHOD FOR ASSESSMENT AND SELECTION OF TRAINEES FOR HIGHER SURGICAL TRAINING IN GENERAL SURGERY. ANZ Journal of Surgery, 2008, 78, 282-290.	0.3	44
50	The Bankart Performance Metrics Combined With a Cadaveric Shoulder Create a Precise and Accurate Assessment Tool for Measuring Surgeon Skill. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2015, 31, 1655-1670.	1.3	43
51	Objective assessment of intraoperative skills for robotâ€assisted radical prostatectomy (RARP): results from the ERUS Scientific and Educational Working Groups Metrics Initiative. BJU International, 2021, 128, 103-111.	1.3	38
52	Metric-based simulation training to proficiency in medical education:- what it is and how to do it. Ulster Medical Journal, 2012, 81, 107-13.	0.2	38
53	Face and Content Validation of Virtual Reality Simulation for Carotid Angiography: Results from the First 100 Physicians Attending the Emory NeuroAnatomy Carotid Training (ENACT) Program. Simulation in Healthcare, 2006, 1, 147-150.	0.7	37
54	Objective structured assessment of technical skills and checklist scales reliability compared for high stakes assessments. ANZ Journal of Surgery, 2014, 84, 568-573.	0.3	37

#	Article	IF	CITATIONS
55	The future of simulation technologies for complex cardiovascular procedures. European Heart Journal, 2012, 33, 2127-2134.	1.0	36
56	Metric-Based Virtual Reality Simulation. Stroke, 2018, 49, e239-e242.	1.0	35
57	Effect of a proficiency-based progression simulation programme on clinical communication for the deteriorating patient: a randomised controlled trial. BMJ Open, 2019, 9, e025992.	0.8	34
58	Orsi Consensus Meeting on European Robotic Training (OCERT): Results from the First Multispecialty Consensus Meeting on Training in Robot-assisted Surgery. European Urology, 2020, 78, 713-716.	0.9	32
59	Persistent Next-Day Effects of Excessive Alcohol Consumption on Laparoscopic Surgical Performance. Archives of Surgery, 2011, 146, 419.	2.3	30
60	Virtual reality training improves junior residents' operating room performance: Results of a prospective, randomized, double-blinded study of the complete laparoscopic cholecystectomy. Journal of the American College of Surgeons, 2004, 199, 73.	0.2	29
61	Simulation in surgery: opportunity or threat?. Irish Journal of Medical Science, 2008, 177, 283-287.	0.8	28
62	An ergonomic analysis of the effects of camera rotation on laparoscopic performance. Surgical Endoscopy and Other Interventional Techniques, 2009, 23, 2684-2691.	1.3	27
63	Proficiency-based progression training: an â€~end to end' model for decreasing error applied to achievement of effective epidural analgesia during labour: a randomised control study. BMJ Open, 2018, 8, e020099.	0.8	27
64	Human-Factors Lessons Learned from the Minimally Invasive Surgery Revolution. Surgical Innovation, 2003, 10, 127-139.	0.4	26
65	Validation studies of virtual reality simulation performance metrics for mechanical thrombectomy in ischemic stroke. Journal of NeuroInterventional Surgery, 2019, 11, 775-780.	2.0	26
66	The effect of augmented reality on the accuracy and learning curve of external ventricular drain placement. Neurosurgical Focus, 2021, 51, E8.	1.0	26
67	Evaluation of a Tensiometer to Provide Objective Feedback in Knot-Tying Performance. American Surgeon, 2005, 71, 1018-1023.	0.4	25
68	Objective assessment of surgical performance and its impact on a national selection programme of candidates for higher surgical training in plastic surgery. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2009, 62, 1543-1549.	0.5	25
69	Randomly Alternating Image Presentation During Laparoscopic Training Leads to Faster Automation to the "Fulcrum Effect― Endoscopy, 2000, 32, 317-321.	1.0	23
70	Palliative care in district general hospitals: the nurse'S perspective. International Journal of Palliative Nursing, 2002, 8, 169-175.	0.2	23
71	Inter-rater Reliability for Metrics Scored in a Binary Fashion—Performance Assessment for an Arthroscopic Bankart Repair. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2018, 34, 2191-2198.	1.3	21
72	Suicide in rural communities. Journal of Community and Applied Social Psychology, 1994, 4, 145-155.	1.4	20

#	Article	IF	CITATIONS
73	Training to Proficiency. JAMA Otolaryngology, 2004, 130, 1145.	1.5	20
74	Attentional Capacity. Annals of Surgery, 2015, 261, e60-e61.	2.1	20
75	Human factors approach to evaluate the user interface of physiologic monitoring. Journal of Electrocardiology, 2015, 48, 982-987.	0.4	20
76	Visual spatial ability for surgical trainees: implications for learning endoscopic, laparoscopic surgery and other image-guided procedures. Surgical Endoscopy and Other Interventional Techniques, 2018, 32, 3634-3639.	1.3	19
77	Evaluation of a tensiometer to provide objective feedback in knot-tying performance. American Surgeon, 2005, 71, 1018-23.	0.4	18
78	Development and validation of the objective assessment of robotic suturing and knot tying skills for chicken anastomotic model. Surgical Endoscopy and Other Interventional Techniques, 2021, 35, 4285-4294.	1.3	17
79	Virtual Reality Simulation Training in a High-fidelity Procedure Suite: Operator Appraisal. Journal of Vascular and Interventional Radiology, 2012, 23, 1361-1366.e2.	0.2	16
80	Measuring surgical skill: a rapidly evolving scientific methodology. Surgical Endoscopy and Other Interventional Techniques, 2013, 27, 1451-1455.	1.3	15
81	A computer-human interaction model to improve the diagnostic accuracy and clinical decision-making during 12-lead electrocardiogram interpretation. Journal of Biomedical Informatics, 2016, 64, 93-107.	2.5	15
82	AO international consensus panel for metrics on a closed reduction and fixation of a 31A2 pertrochanteric fracture. Injury, 2018, 49, 2227-2233.	0.7	14
83	The Efficacy of Using a Personal Stereo to Treat Auditory Hallucinations. Behavior Modification, 2002, 26, 537-549.	1.1	13
84	International expert consensus on a scientific approach to training novice cardiac resynchronization therapy implanters using performance quality metrics. International Journal of Cardiology, 2019, 289, 63-69.	0.8	12
85	A validation study of intraoperative performance metrics for training novice cardiac resynchronization therapy implanters. International Journal of Cardiology, 2020, 307, 48-54.	0.8	12
86	Proficiency-based Progression Training: A Scientific Approach to Learning Surgical Skills. European Urology, 2022, 81, 394-395.	0.9	12
87	Development of performance and error metrics for ultrasound-guided axillary brachial plexus block. Advances in Medical Education and Practice, 2017, Volume 8, 257-263.	0.7	11
88	Operational framework and training standard requirements for Alâ€empowered robotic surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2020, 16, 1-13.	1.2	11
89	Beliefs of Psychologists About Schizophrenia and Their Role in Its Treatment. Irish Journal of Psychology, 1991, 12, 393-405.	0.2	10
90	The effects of varying information content and speaking aloud on auditory hallucinations. The British Journal of Medical Psychology, 1995, 68, 143-155.	0.6	10

#	Article	IF	CITATIONS
91	The effect of metrics-based feedback on acquisition of sonographic skills relevant to performance of ultrasound-guided axillary brachial plexus block. Anaesthesia, 2017, 72, 1117-1124.	1.8	10
92	Deliberate practice using validated metrics improves skill acquisition in performance of ultrasound-guided peripheral nerve block in a simulated setting. Journal of Clinical Anesthesia, 2018, 48, 22-27.	0.7	10
93	An Objective Evaluation of a Multiâ€Component, Competitive, Selection Process for Admitting Surgeons into Higher Surgical Training in a National Setting. World Journal of Surgery, 2014, 38, 296-304.	0.8	9
94	Reliability of Observational Assessment Methods for Outcome-based Assessment of Surgical Skill: Systematic Review and Meta-analyses. Journal of Surgical Education, 2020, 77, 189-201.	1.2	9
95	Wearable technology-based metrics for predicting operator performance during cardiac catheterisation. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 645-657.	1.7	8
96	A Proficiency-Based Progression Simulation Training Curriculum to Acquire the Skills Needed in Performing Arthroscopic Bankart and Rotator Cuff Repairs—Implementation and Impact. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2021, 37, 1099-1106.e5.	1.3	8
97	Intraoperative robotic-assisted low anterior rectal resection performance assessment using procedure-specific binary metrics and a global rating scale. BJS Open, 2022, 6, .	0.7	8
98	A case-control comparison of traditional and virtual-reality training in laparoscopic psychomotor performance. Minimally Invasive Therapy and Allied Technologies, 2000, 9, 347-352.	0.6	7
99	A computerised test of perceptual ability for learning endoscopic and laparoscopic surgery and other image guided procedures: Score norms for PicSOr. American Journal of Surgery, 2017, 214, 969-973.	0.9	7
100	Outlier experienced surgeon's performances impact on benchmark for technical surgical skills training. ANZ Journal of Surgery, 2018, 88, E412-E417.	0.3	7
101	Assessing Surgical Skill Using Bench Station Models. Plastic and Reconstructive Surgery, 2008, 121, 1869-1870.	0.7	6
102	Simulation Research in Gastrointestinal and Urologic Care—Challenges and Opportunities. Annals of Surgery, 2018, 267, 26-34.	2.1	6
103	Simulation fidelity: more than experience and mere repetition?. Studies in Health Technology and Informatics, 2014, 196, 128-34.	0.2	6
104	Factors Associated With Variation in Outcomes in Bariatric Surgery Centers of Excellence. JAMA - Journal of the American Medical Association, 2018, 320, 1386.	3.8	5
105	Proficiency based progression simulation training significantly reduces utility strikes; A prospective, randomized and blinded study. PLoS ONE, 2020, 15, e0231979.	1.1	5
106	Validation of phlebotomy performance metrics developed as part of a proficiency-based progression initiative to mitigate wrong blood in tube. Postgraduate Medical Journal, 2021, 97, 363-367.	0.9	5
107	Surgical Simulation. Annals of Surgery, 2015, 262, e50-e51.	2.1	4
108	Arthroscopic Rotator Cuff Repair Metrics: Establishing Face, Content, and Construct Validity in a Cadaveric Model. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2020, 36, 71-79.e1.	1.3	4

0

#	Article	IF	CITATIONS
109	Does quality assured eLearning provide adequate preparation for robotic surgical skills; a prospective, randomized and multi-center study. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 457-465.	1.7	4
110	The medical procedure pathway. European Journal of Anaesthesiology, 2015, 32, 79-82.	0.7	3
111	Acute surgical woundâ€dressing procedure: Description of the steps involved in the development and validation of an observational metric. International Wound Journal, 2019, 16, 641-648.	1.3	3
112	The imperative of consistency and proficiency in cardiac devices implant skills training. Open Heart, 2021, 8, e001629.	0.9	3
113	Development and validation of the metric-based assessment of a robotic vessel dissection, vessel loop positioning, clip applying and bipolar coagulation task on an avian model. Journal of Robotic Surgery, 2022, 16, 677-685.	1.0	3
114	Development and Validation of the Metric-Based Assessment of a Robotic Dissection Task on an Avian Model. Journal of Surgical Research, 2022, 277, 224-234.	0.8	3
115	Live Observational Objective Assessment of Operative Performance in a Cadaveric Model is Equivalent to Delayed Video-Based Assessment. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2021, 37, 3241-3247.	1.3	2
116	Simulations for Procedural Training. , 2011, , 39-66.		2
117	Validation of Metrics Coupled to Simulation Training. , 2011, , 185-211.		2
118	Proficiencyâ€based progression training for robotic surgery skills training: a randomized clinical trial. BJU International, 2022, 130, 528-535.	1.3	2
119	Discrimination, reliability, sensitivity, and specificity of metric-based assessment of an unstable pertrochanteric 31A2 intramedullary nailing procedure performed by experienced and novice surgeons. Injury, 2022, 53, 2832-2838.	0.7	2
120	Augmenting, not cheating!. Surgery, 2013, 153, 299-300.	1.0	1
121	Simulation Research in Gastrointestinal and Urologic Care—Challenges and Opportunities. Journal of Clinical Gastroenterology, 2017, Publish Ahead of Print, .	1.1	1
122	Virtual Reality: Objective Assessment, Education, and Training. , 2007, , 27-33.		1
123	Response to. Annals of Surgery, 2020, Publish Ahead of Print, e847-e848.	2.1	1
124	Proficiency-Based Progression Surgical Training: Preparation for Finishing School. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2021, 37, 3003.	1.3	0
125	Agents of Change. , 2011, , 1-38.		0

Metrics for the Measurement of Skill., 2011, , 123-153.

#	Article	IF	CITATIONS
127	Metric-Based Simulation Training. , 2011, , 155-183.		0
128	Simulation In and For Medicine: Where Next?. , 2011, , 297-323.		0
129	Human Factors in Acquiring Medical Skills; Learning and Skill Acquisition in Surgery. , 2011, , 89-121.		0
130	Metric-Based Training to Proficiency: What Is It and How Is It Done?. , 2011, , 213-240.		0
131	Didactic Education and Training for Improved Intraoperative Performance: e-Learning Comes of Age. , 2011, , 241-264.		0
132	Simulation Training for Improved Procedural Performance. , 2011, , 265-296.		0
133	Human Factors in Acquiring Medical Skill; Perception and Cognition. , 2011, , 67-87.		Ο