Jaime Colchero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7606121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polarity Effects on ZnO Films Grown along the Nonpolar[112Â ⁻ 0]Direction. Physical Review Letters, 2005, 95, 226105.	2.9	63
2	Nanoscale measurement of the power spectral density of surface roughness: how to solve a difficult experimental challenge. Nanoscale Research Letters, 2012, 7, 174.	3.1	58
3	The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires. Journal of Applied Physics, 2015, 117, .	1.1	55
4	Formation and Rupture of Schottky Nanocontacts on ZnO Nanocolumns. Nano Letters, 2007, 7, 1505-1511.	4.5	54
5	Imaging and Mapping Protein-Binding Sites on DNA Regulatory Regions with Atomic Force Microscopy. Biochemical and Biophysical Research Communications, 2001, 280, 151-157.	1.0	31
6	Molecular structure of poly(3-alkyl-thiophenes) investigated by calorimetry and grazing incidence X-ray scattering. Solar Energy Materials and Solar Cells, 2012, 97, 109-118.	3.0	26
7	Nanoscale Characterization of the Morphology and Electrostatic Properties of Poly(3-octylthiophene)/Graphite-Nanoparticle Blends. Advanced Functional Materials, 2006, 16, 1975-1984.	7.8	25
8	Quantitative analysis of tip–sample interaction in non-contact scanning force spectroscopy. Nanotechnology, 2006, 17, 5491-5500.	1.3	19
9	â€~Flatten plus': a recent implementation in WSxM for biological research. Bioinformatics, 2015, 31, 2918-2920.	1.8	19
10	Rose petal effect: A subtle combination of nanoâ€scale roughness and chemical variability. Nano Select, 2022, 3, 977-989.	1.9	17
11	The influence of UV radiation and ozone exposure on the electronic properties of poly-3-octyl-thiophene thin films. Solar Energy Materials and Solar Cells, 2011, 95, 1326-1332.	3.0	15
12	Characterization by atomic force microscopy and cryoelectron microscopy of tau polymers assembled in Alzheimer's disease1. Journal of Alzheimer's Disease, 2001, 3, 443-451.	1.2	14
13	Layered self-organized structures on poly(3-octylthiophene) thin films studied by scanning probe microscopy. European Polymer Journal, 2008, 44, 2506-2515.	2.6	14
14	True non-contact atomic force microscopy imaging of heterogeneous biological samples in liquids: topography and material contrast. Nanoscale, 2017, 9, 2903-2915.	2.8	14
15	Fine defect engineering of graphene friction. Carbon, 2021, 182, 735-741.	5.4	14
16	Photoinduced Charge Transfer and Trapping on Single Gold Metal Nanoparticles on TiO ₂ . ACS Applied Materials & Interfaces, 2021, 13, 50531-50538.	4.0	12
17	Na, K-ATPase in crystalline form investigated by scanning force microscopy. Ultramicroscopy, 1992, 42-44, 1133-1140.	0.8	11
18	Conducting polymers as electron glasses: surface charge domains and slow relaxation. Scientific Reports, 2016, 6, 21647.	1.6	10

JAIME COLCHERO

#	Article	IF	CITATIONS
19	Photobleaching of MEH-PPV thin films: Correlation between optical properties and the nanoscale surface photovoltage. Solar Energy Materials and Solar Cells, 2013, 117, 15-21.	3.0	8
20	Neutron reflectometry and hard X-ray photoelectron spectroscopy study of the vertical segregation of PCBM in organic solar cells. Solar Energy Materials and Solar Cells, 2019, 191, 62-70.	3.0	8
21	Nanoscale Electro-Optical Properties of Organic Semiconducting Thin Films: From Individual Materials to the Blend. Journal of Physical Chemistry C, 2012, 116, 17919-17927.	1.5	7
22	Nanophotoactivity of Porphyrin Functionalized Polycrystalline ZnO Films. ACS Applied Materials & Interfaces, 2016, 8, 16783-16790.	4.0	7
23	Nanogoniometry with Scanning Force Microscopy: A Model Study of CdTe Thin Films. Small, 2007, 3, 474-480.	5.2	5
24	Synthesis and electroâ€optical characterization of new conducting PEDOT/Auâ€nanorods nanocomposites. Polymers for Advanced Technologies, 2011, 22, 1665-1672.	1.6	5
25	Calibration of oscillation amplitude in dynamic scanning force microscopy. Nanotechnology, 2013, 24, 185701.	1.3	4
26	In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy. Beilstein Journal of Nanotechnology, 2018, 9, 2925-2935.	1.5	4
27	Nanoscale J-aggregates of poly(3-hexylthiophene): key to electronic interface interactions with graphene oxide as revealed by KPFM. Nanoscale, 2019, 11, 11202-11208.	2.8	4
28	Note: Submicrometer-precision sample holder for accurate re-positioning of samples in scanning force microscopy. Review of Scientific Instruments, 2013, 84, 046101.	0.6	3
29	Structural characterization of selective area growth GaN nanowires by non-destructive optical and electrical techniques. Journal Physics D: Applied Physics, 2015, 48, 305301.	1.3	3
30	A Dual Interaction Between the 5′- and 3′-Ends of the Melon Necrotic Spot Virus (MNSV) RNA Genome Is Required for Efficient Cap-Independent Translation. Frontiers in Plant Science, 2018, 9, 625.	1.7	3
31	Nanoscale Charge Density and Dynamics in Graphene Oxide. , 2021, 3, 1826-1831.		3
32	Conductivity and nanoscale morphology of thin films prepared from indolo[2,3-a]carbazole and 11,12-dioctylindolo[2,3-a]carbazole. Journal of Materials Science: Materials in Electronics, 2014, 25, 5452-5461.	1.1	2
33	Metalâ€conducting polymer interface studied by <scp>Kelvin</scp> probe microscopy: Au and Al on poly(3â€octylâ€thiophene). Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1083-1093.	2.4	2
34	Investigation of the Na,K-ATPase by SFM. , 1993, , 275-308.		2
35	A method to simulate the optical image from farâ€field scattering numerical data and its application to the total internal reflection microscopy of metallic nanowires. Journal of Microscopy, 2019, 276, 21-26.	0.8	0
36	Kelvin Probe Microscopy Investigation of Poly-Octylthiophene Aggregates. Materials, 2022, 15, 1212.	1.3	0