

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7606051/publications.pdf Version: 2024-02-01

\\/FI\\/FI

	Tradeoffs between soil conservation and soilâ \in water retention: The role of vegetation pattern and		
1	density. Land Degradation and Development, 2022, 33, 18-27.	3.9	3
2	Research on Automatic Identification Method of Terraces on the Loess Plateau Based on Deep Transfer Learning. Remote Sensing, 2022, 14, 2446.	4.0	4
3	Slope instabilities in steep cultivation systems: Process classification and opportunities from remote sensing. Land Degradation and Development, 2021, 32, 1368-1388.	3.9	20
4	Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China. Ecological Indicators, 2021, 121, 107013.	6.3	43
5	Quantifying the contributions of structural factors on runoff water quality from green roofs and optimizing assembled combinations using Taguchi method. Journal of Hydrology, 2021, 593, 125864.	5.4	15
6	Responses of soil moisture to rainfall pulses and land preparation techniques. , 2021, , 441-458.		0
7	A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine. Earth System Science Data, 2021, 13, 2437-2456.	9.9	39
8	Effects of terracing on soil properties in three key mountainous regions of China. Geography and Sustainability, 2021, 2, 195-206.	4.3	6
9	Effects of terracing measures on water retention of pinus Tabulaeformis forest in the dryland loess hilly region of China. Agricultural and Forest Meteorology, 2021, 308-309, 108544.	4.8	5
10	How can terracing impact on soil moisture variation in China? A meta-analysis. Agricultural Water Management, 2020, 227, 105849.	5.6	18
11	Soil Water Availability Drives Changes in Community Traits Along a Hydrothermal Gradient in Loess Plateau Grasslands. Rangeland Ecology and Management, 2020, 73, 276-284.	2.3	1
12	Experimental Study on the Rainfall-Runoff Responses of Typical Urban Surfaces and Two Green Infrastructures Using Scale-Based Models. Environmental Management, 2020, 66, 683-693.	2.7	19
13	Assessing the runoff retention of extensive green roofs using runoff coefficients and curve numbers and the impacts of substrate moisture. Hydrology Research, 2020, 51, 635-647.	2.7	14
14	Does terracing enhance soil organic carbon sequestration? A national-scale data analysis in China. Science of the Total Environment, 2020, 721, 137751.	8.0	36
15	Plant traits in influencing soil moisture in semiarid grasslands of the Loess Plateau, China. Science of the Total Environment, 2020, 718, 137355.	8.0	25
16	Effects of terracing on root distribution of Pinus tabulaeformis Carr. forest and soil properties in the Loess Plateau of China. Science of the Total Environment, 2020, 721, 137506.	8.0	18
17	Effects of rainfall and terracing-vegetation combinations on water erosion in a loess hilly area, China. Journal of Environmental Management, 2020, 261, 110247.	7.8	29
18	Does the spatial location of green roofs affects runoff mitigation in small urbanized catchments?. Journal of Environmental Management, 2020, 268, 110707.	7.8	29

WEI WEI

#	Article	IF	CITATIONS
19	The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China. Science of the Total Environment, 2019, 647, 1323-1332.	8.0	53
20	Runoff retention assessment for extensive green roofs and prioritization of structural factors at runoff plot scale using the Taguchi method. Ecological Engineering, 2019, 138, 281-288.	3.6	7
21	The impacts of substrate and vegetation on stormwater runoff quality from extensive green roofs. Journal of Hydrology, 2019, 576, 575-582.	5.4	42
22	The Joint Effects of Precipitation Gradient and Afforestation on Soil Moisture across the Loess Plateau of China. Forests, 2019, 10, 285.	2.1	16
23	Climate background, relative rate, and runoff effect of multiphase water transformation in Qilian Mountains, the third pole region. Science of the Total Environment, 2019, 663, 315-328.	8.0	37
24	Quantifying the effects of precipitation, vegetation, and land preparation techniques on runoff and soil erosion in a Loess watershed of China. Science of the Total Environment, 2019, 652, 755-764.	8.0	73
25	The influence of structural factors on stormwater runoff retention of extensive green roofs: new evidence from scale-based models and real experiments. Journal of Hydrology, 2019, 569, 230-238.	5.4	72
26	Assessment of the impact of different vegetation patterns on soil erosion processes on semiarid loess slopes. Earth Surface Processes and Landforms, 2018, 43, 1860-1870.	2.5	63
27	Effects of terracing on soil water and canopy transpiration of Pinus tabulaeformis in the Loess Plateau of China. Ecological Engineering, 2017, 102, 557-564.	3.6	39
28	Evaluating canopy transpiration and water use of two typical planted tree species in the dryland Loess Plateau of China. Ecohydrology, 2017, 10, e1830.	2.4	11
29	Effects of terracing practices on water erosion control in China: A meta-analysis. Earth-Science Reviews, 2017, 173, 109-121.	9.1	158
30	Land preparation and vegetation type jointly determine soil conditions after long-term land stabilization measures in a typical hilly catchment, Loess Plateau of China. Journal of Soils and Sediments, 2017, 17, 144-156.	3.0	45
31	Global synthesis of the classifications, distributions, benefits and issues of terracing. Earth-Science Reviews, 2016, 159, 388-403.	9.1	201
32	Estimation of runoff mitigation by morphologically different cover crop root systems. Journal of Hydrology, 2016, 538, 667-676.	5.4	86
33	Effects of vegetation restoration on the spatial distribution of soil moisture at the hillslope scale in semi-arid regions. Catena, 2015, 124, 138-146.	5.0	46
34	Effects of surficial condition and rainfall intensity on runoff in a loess hilly area, China. Journal of Hydrology, 2014, 513, 115-126.	5.4	83
35	Comparison of deep soil moisture in two re-vegetation watersheds in semi-arid regions. Journal of Hydrology, 2014, 513, 314-321.	5.4	73
36	Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. Catena, 2014, 115, 123-133.	5.0	194

Wei Wei

#	Article	IF	CITATIONS
37	Towards Sustainable Integrated Watershed Ecosystem Management: A Case Study in Dingxi on the Loess Plateau, China. Environmental Management, 2013, 51, 126-137.	2.7	28
38	Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. Journal of Hydrology, 2012, 475, 111-122.	5.4	190
39	Microtopography Recreation Benefits Ecosystem Restoration. Environmental Science & Technology, 2012, 46, 10875-10876.	10.0	24
40	Effects of landscape restoration on soil water storage and water use in the Loess Plateau Region, China. Forest Ecology and Management, 2010, 259, 1291-1298.	3.2	183
41	Water erosion response to rainfall and land use in different drought-level years in a loess hilly area of China. Catena, 2010, 81, 24-31.	5.0	69
42	Responses of water erosion to rainfall extremes and vegetation types in a loess semiarid hilly area, NW China. Hydrological Processes, 2009, 23, 1780-1791.	2.6	83
43	Soil and water conservation on the Loess Plateau in China: review and perspective. Progress in Physical Geography, 2007, 31, 389-403.	3.2	380
44	The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. Journal of Hydrology, 2007, 335, 247-258.	5.4	355