Vlad Cojocaru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7605560/publications.pdf

Version: 2024-02-01

331670 434195 31 1,728 21 31 h-index citations g-index papers 36 36 36 2478 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The ins and outs of cytochrome P450s. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 390-401.	2.4	311
2	Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Developmental Biology, 2004, 272, 351-361.	2.0	191
3	A unique Oct4 interface is crucial for reprogramming to pluripotency. Nature Cell Biology, 2013, 15, 295-301.	10.3	135
4	Structure and Dynamics of the Membrane-Bound Cytochrome P450 2C9. PLoS Computational Biology, 2011, 7, e1002152.	3.2	134
5	OCT4: Dynamic DNA binding pioneers stem cell pluripotency. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 138-154.	1.9	123
6	Reprogramming to pluripotency is an ancient trait of vertebrate Oct4 and Pou2 proteins. Nature Communications, 2012, 3, 1279.	12.8	64
7	Conformational diversity and ligand tunnels of mammalian cytochrome <scp>P</scp> 450s. Biotechnology and Applied Biochemistry, 2013, 60, 134-145.	3.1	63
8	Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Scientific Reports, 2015, 5, 13533.	3.3	58
9	Control of Dead end localization and activity – Implications for the function of the protein in antagonizing miRNA function. Mechanisms of Development, 2009, 126, 270-277.	1.7	50
10	Regulation of the Activity of Lactate Dehydrogenases from Four Lactic Acid Bacteria. Journal of Biological Chemistry, 2013, 288, 21295-21306.	3.4	47
11	Structural Basis for the SOX-Dependent Genomic Redistribution of OCT4 in Stem Cell Differentiation. Structure, 2014, 22, 1274-1286.	3.3	46
12	Changing <scp>POU</scp> dimerization preferences converts Oct6 into a pluripotency inducer. EMBO Reports, 2017, 18, 319-333.	4.5	42
13	Conformational selection and dynamic adaptation upon linker histone binding to the nucleosome. Nucleic Acids Research, 2016, 44, 6599-6613.	14.5	40
14	Nucleosomal DNA Dynamics Mediate Oct4 Pioneer Factor Binding. Biophysical Journal, 2020, 118, 2280-2296.	0.5	39
15	The snRNP 15.5K protein folds its cognate K-turn RNA: A combined theoretical and biochemical study. Rna, 2005, 11, 197-209.	3.5	38
16	DNA-mediated cooperativity facilitates the co-selection of cryptic enhancer sequences by SOX2 and PAX6 transcription factors. Nucleic Acids Research, 2015, 43, 1513-1528.	14.5	37
17	Multiple, Ligand-dependent Routes from the Active Site of Cytochrome P450 2C9. Current Drug Metabolism, 2012, 13, 143-154.	1.2	32
18	Dependence of Chromatosome Structure on Linker Histone Sequence and Posttranslational Modification. Biophysical Journal, 2018, 114, 2363-2375.	0.5	31

#	Article	IF	CITATIONS
19	Toward an Ensemble View of Chromatosome Structure: A Paradigm Shift from One to Many. Structure, 2018, 26, 1050-1057.	3.3	31
20	Dynamics of CYP51: implications for function and inhibitor design. Journal of Molecular Recognition, 2015, 28, 59-73.	2.1	28
21	Loss of G-A base pairs is insufficient for achieving a large opening of U4 snRNA K-turn motif. Nucleic Acids Research, 2005, 33, 3435-3446.	14.5	27
22	Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery. PLoS Computational Biology, 2015, 11, e1004287.	3.2	23
23	Chromatosome Structure and Dynamics from Molecular Simulations. Annual Review of Physical Chemistry, 2020, 71, 101-119.	10.8	23
24	Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 67-78.	2.4	21
25	Histone tails cooperate to control the breathing of genomic nucleosomes. PLoS Computational Biology, 2021, 17, e1009013.	3.2	21
26	Breaths, Twists, and Turns of Atomistic Nucleosomes. Journal of Molecular Biology, 2021, 433, 166744.	4.2	19
27	DNA-mediated dimerization on a compact sequence signature controls enhancer engagement and regulation by FOXA1. Nucleic Acids Research, 2018, 46, 5470-5486.	14.5	18
28	Organism-Adapted Specificity of the Allosteric Regulation of Pyruvate Kinase in Lactic Acid Bacteria. PLoS Computational Biology, 2013, 9, e1003159.	3.2	14
29	Cancerâ€associated missense mutations enhance the pluripotency reprogramming activity of OCT4 and SOX17. FEBS Journal, 2020, 287, 122-144.	4.7	11
30	ArhGEF37 assists Dynamin2 during Clathrin-mediated endocytosis. Journal of Cell Science, 2019, 132, .	2.0	6
31	Coop-Seq Analysis Demonstrates that Sox2 Evokes Latent Specificities in the DNA Recognition by Pax6. Journal of Molecular Biology, 2017, 429, 3626-3634.	4.2	4