Fabien Bruneval

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7605344/publications.pdf

Version: 2024-02-01

126907 106344 6,756 64 33 65 citations h-index g-index papers 67 67 67 6377 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>AbÂlnitio</i> Prediction of a Negative Barkas Coefficient for Slow Protons and Antiprotons in LiF. Physical Review Letters, 2022, 128, 043401.	7.8	5
2	Assessment of atomistic data for predicting the phase diagram and defect thermodynamics. The example of non-stoichiometric uranium dioxide. Journal of Nuclear Materials, 2022, 569, 153864.	2.7	4
3	Improved One-Shot Total Energies from the Linearized GW Density Matrix. Journal of Chemical Theory and Computation, 2021, 17, 2126-2136.	5.3	7
4	Coupling Natural Orbital Functional Theory and Many-Body Perturbation Theory by Using Nondynamically Correlated Canonical Orbitals. Journal of Chemical Theory and Computation, 2021, 17, 7562-7574.	5.3	14
5	The GW Miracle in Many-Body Perturbation Theory for the Ionization Potential of Molecules. Frontiers in Chemistry, 2021, 9, 749779.	3.6	32
6	The Abinitproject: Impact, environment and recent developments. Computer Physics Communications, 2020, 248, 107042.	7.5	369
7	Extrapolating Unconverged GW Energies up to the Complete Basis Set Limit with Linear Regression. Journal of Chemical Theory and Computation, 2020, 16, 4399-4407.	5.3	14
8	Reproducibility in <mml:math altimg="si271.svg" display="inline" id="d1e1825" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nml:5nn>0	
9	ABINIT: Overview and focus on selected capabilities. Journal of Chemical Physics, 2020, 152, 124102.	3.0	179
10	Direct Comparison of Many-Body Methods for Realistic Electronic Hamiltonians. Physical Review X, 2020, 10, .	8.9	68
11	Quantitative electronic stopping power from localized basis set. Physical Review B, 2020, 101, .	3.2	13
12	Improved density matrices for accurate molecular ionization potentials. Physical Review B, 2019, 99, .	3.2	7
13	Assessment of the Linearized <i>GW</i> Density Matrix for Molecules. Journal of Chemical Theory and Computation, 2019, 15, 4069-4078.	5.3	13
14	First-Principles Approach to the Conductance of Covalently Bound Molecular Junctions. Journal of Physical Chemistry C, 2019, 123, 6379-6387.	3.1	10
15	Optical Properties of Saturated and Unsaturated Carbonyl Defects in Polyethylene. Journal of Physical Chemistry B, 2018, 122, 2023-2030.	2.6	5
16	Photoelectron spectra of copper oxide cluster anions from first principles methods. Journal of Chemical Physics, 2018, 149, 064306.	3.0	8
17	Electronic stopping power from time-dependent density-functional theory in Gaussian basis. European Physical Journal B, 2018, 91, 1.	1.5	28
18	Lattice constant in nonstoichiometric uranium dioxide from first principles. Physical Review Materials, 2018, 2, .	2.4	22

#	ARTICLE of vibrational entropy on the concentrations of oxygen interstitial clusters and uranium	IF	Citations
19	vacancies in nonstoichiometric <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">U</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> .	2.4	15
20	Physical Review Materials, 2018, 2, . Benchmarking the <i>>GW</i> > Approximation and Betheâ€"Salpeter Equation for Groups IB and IIB Atoms and Monoxides. Journal of Chemical Theory and Computation, 2017, 13, 2135-2146.	5. 3	34
21	An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an <i>ab initio</i> Bethe-Salpeter equation approach and the Tamm-Dancoff approximation. Journal of Chemical Physics, 2017, 146, 194108.	3.0	81
22	Partial Molar Volumes of Aqua Ions from First Principles. Journal of Chemical Theory and Computation, 2017, 13, 3427-3431.	5.3	7
23	$\langle i \rangle$ GW $\langle i \rangle$ and Bethe-Salpeter study of small water clusters. Journal of Chemical Physics, 2016, 144, 034109.	3.0	38
24	Optimized virtual orbital subspace for faster GW calculations in localized basis. Journal of Chemical Physics, 2016, 145, 234110.	3.0	24
25	Recent developments in the ABINIT software package. Computer Physics Communications, 2016, 205, 106-131.	7. 5	662
26	Evaluating the <i>GW</i> Approximation with CCSD(T) for Charged Excitations Across the Oligoacenes. Journal of Chemical Theory and Computation, 2016, 12, 2834-2842.	5.3	71
27	Effects of quantum confinement on excited state properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrTiO</mml:mi><mml:mn>3initiomany-body perturbation theory. Physical Review B, 2016, 94, .</mml:mn></mml:msub></mml:math>	ıml:n 3∩2 <td>ıml:::asub></td>	ıml ::: asub>
28	<i>Ab initio</i> electronic stopping power of protons in bulk materials. Physical Review B, 2016, 93, .	3.2	40
29	molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters. Computer Physics Communications, 2016, 208, 149-161.	7.5	139
30	Systematic defect donor levels in III-V and II-VI semiconductors revealed by hybrid functional density-functional theory. Physical Review B, 2015, 92, .	3.2	7
31	Pressure, relaxation volume, and elastic interactions in charged simulation cells. Physical Review B, 2015, 91, .	3.2	38
32	A systematic benchmark of the <i>ab initio</i> Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules. Journal of Chemical Physics, 2015, 142, 244101.	3.0	137
33	Consistent treatment of charged systems within periodic boundary conditions: The projector augmented-wave and pseudopotential methods revisited. Physical Review B, 2014, 89, .	3.2	25
34	Quasiparticle Self-Consistent GW Method for the Spectral Properties of Complex Materials. Topics in Current Chemistry, 2014, 347, 99-135.	4.0	27
35	Screened Coulomb interaction calculations: cRPA implementation and applications to dynamical screening and self-consistency in uranium dioxide and cerium. Physical Review B, 2014, 89, .	3.2	61
36	Comprehensive <i>Ab Initio</i> Study of Doping in Bulk ZnO with Group-V Elements. Physical Review Applied, 2014, 1, .	3.8	32

#	Article	IF	Citations
37	Point defect modeling in materials: Coupling <i>ab initio</i> and elasticity approaches. Physical Review B, 2013, 88, .	3.2	158
38	Benchmarking the Starting Points of the $\langle i \rangle$ Approximation for Molecules. Journal of Chemical Theory and Computation, 2013, 9, 324-329.	5.3	206
39	<i>Ab initio</i> formation volume of charged defects. Physical Review B, 2012, 86, .	3.2	14
40	lonization energy of atoms obtained from $\langle i \rangle$ GW $\langle i \rangle$ self-energy or from random phase approximation total energies. Journal of Chemical Physics, 2012, 136, 194107.	3.0	96
41	Range-Separated Approach to the RPA Correlation Applied to the van der Waals Bond and to Diffusion of Defects. Physical Review Letters, 2012, 108, 256403.	7.8	37
42	Methodological aspects of the GW calculation of the carbon vacancy in 3C-SiC. Nuclear Instruments & Methods in Physics Research B, 2012, 277, 77-79.	1.4	17
43	Direct observation of Al-doping-induced electronic states in the valence band and band gap of ZnO films. Physical Review B, $2011,84,\ldots$	3.2	18
44	Understanding and correcting the spurious interactions in charged supercells. Physical Review B, 2011, 84, .	3.2	89
45	Energetics and metastability of the silicon vacancy in cubic SiC. Physical Review B, 2011, 83, .	3.2	33
46	Dynamic structure factor and dielectric function of silicon for finite momentum transfer: Inelastic x-ray scattering experiments and <i>ab initio</i> calculations. Physical Review B, 2010, 81, .	3.2	50
47	p-type doping and codoping of ZnO based on nitrogen is ineffective: An ab initio clue. Applied Physics Letters, 2010, 97, 042108.	3.3	22
48	Effects of Electronic and Lattice Polarization on the Band Structure of Delafossite Transparent Conductive Oxides. Physical Review Letters, 2010, 104, 136401.	7.8	88
49	ABINIT: First-principles approach to material and nanosystem properties. Computer Physics Communications, 2009, 180, 2582-2615.	7.5	2,297
50	A Molecular Dynamics Study of the Early Stages of Calcium Carbonate Growth. Journal of Physical Chemistry B, 2009, 113, 11680-11687.	2.6	116
51	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>G</mml:mi><mml:mi>W</mml:mi></mml:math>Approximation of the Many-Body Problem and Changes in the Particle Number. Physical Review Letters, 2009, 103, 176403.</pre>	7.8	77
52	Accurate <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mi>W</mml:mi></mml:mrow></mml:math> self-energing a plane-wave basis using only a few empty states: Towards large systems. Physical Review B, 2008, 78,	ies 3.2	194
53	New Lennard-Jones metastable phase. Journal of Chemical Physics, 2008, 129, 026101.	3.0	10
54	Electronic excitations: Ab initio calculations of electronic spectra and application to zirconia ZrO2, titania TiO2 and cuprous oxide Cu2O. Computational Materials Science, 2007, 38, 482-493.	3.0	22

#	Article	IF	CITATION
55	Understanding Correlations in Vanadium Dioxide from First Principles. Physical Review Letters, 2007, 99, 266402.	7.8	198
56	Molecular Dynamics Study of the Solvation of Calcium Carbonate in Water. Journal of Physical Chemistry B, 2007, 111, 12219-12227.	2.6	66
57	Beyond time-dependent exact exchange: The need for long-range correlation. Journal of Chemical Physics, 2006, 124, 144113.	3.0	32
58	Effect of self-consistency on quasiparticles in solids. Physical Review B, 2006, 74, .	3.2	230
59	Signatures of Short-Range Many-Body Effects in the Dielectric Function of Silicon for Finite Momentum Transfer. Physical Review Letters, 2006, 97, 237602.	7.8	40
60	Exchange and Correlation Effects in Electronic Excitations of Cu2O. Physical Review Letters, 2006, 97, 267601.	7.8	114
61	TDDFT from molecules to solids: The role of long-range interactions. International Journal of Quantum Chemistry, 2005, 102, 684-701.	2.0	65
62	Comment on "Quantum Confinement and Electronic Properties of Silicon Nanowires― Physical Review Letters, 2005, 94, 219701; author reply 219702.	7.8	43
63	Many-Body Perturbation Theory Using the Density-Functional Concept: Beyond theGWApproximation. Physical Review Letters, 2005, 94, 186402.	7.8	126
64	Formation and Migration Energy of Native Defects in Silicon Carbide from First Principles: An Overview, Defect and Diffusion Forum, 0, 323-325, 11-18.	0.4	7