

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7605202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science, 2011, 332, 443-447.	6.0	3,672
2	Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuelcells. Energy and Environmental Science, 2011, 4, 114-130.	15.6	1,456
3	Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society, 2017, 139, 14143-14149.	6.6	1,215
4	Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nature Catalysis, 2018, 1, 935-945.	16.1	1,075
5	Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction. Accounts of Chemical Research, 2013, 46, 1878-1889.	7.6	975
6	Nitrogen oordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Advanced Materials, 2018, 30, 1706758.	11.1	788
7	Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nature Catalysis, 2019, 2, 578-589.	16.1	760
8	Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 2016, 11, 601-625.	6.2	738
9	Highly active atomically dispersed CoN ₄ fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy and Environmental Science, 2019, 12, 250-260.	15.6	691
10	Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy, 2016, 29, 83-110.	8.2	650
11	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 122, 12217-12314.	23.0	563
12	Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells. Journal of Materials Chemistry, 2011, 21, 11392.	6.7	545
13	Experimental Observation of Redox-Induced Fe–N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. ACS Nano, 2015, 9, 12496-12505.	7.3	499
14	Metal (Ni, Co)â€Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts. Advanced Functional Materials, 2015, 25, 5799-5808.	7.8	490
15	Nitrogen-Doped Graphene-Rich Catalysts Derived from Heteroatom Polymers for Oxygen Reduction in Nonaqueous Lithium–O ₂ Battery Cathodes. ACS Nano, 2012, 6, 9764-9776.	7.3	486
16	High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy and Environmental Science, 2019, 12, 2548-2558.	15.6	457
17	Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chemical Society Reviews, 2020, 49, 3484-3524.	18.7	453
18	Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nature Catalysis, 2020, 3, 1044-1054.	16.1	443

#	Article	IF	CITATIONS
19	Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy, 2016, 25, 110-119.	8.2	434
20	PGMâ€Free Cathode Catalysts for PEM Fuel Cells: A Miniâ€Review on Stability Challenges. Advanced Materials, 2019, 31, e1807615.	11.1	430
21	Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2009, 188, 38-44.	4.0	417
22	Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy, 2016, 27, 359-376.	8.2	415
23	Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells. Journal of Power Sources, 2008, 183, 34-42.	4.0	412
24	A Grapheneâ€Supported Singleâ€Atom FeN ₅ Catalytic Site for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 14871-14876.	7.2	410
25	Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy, 2018, 48, 217-226.	8.2	406
26	Unveiling Active Sites of CO ₂ Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. ACS Catalysis, 2018, 8, 3116-3122.	5.5	405
27	Graphene/Grapheneâ€Tube Nanocomposites Templated from Cageâ€Containing Metalâ€Organic Frameworks for Oxygen Reduction in Li–O ₂ Batteries. Advanced Materials, 2014, 26, 1378-1386.	11.1	398
28	New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid. Nano Letters, 2015, 15, 2468-2473.	4.5	385
29	Multitechnique Characterization of a Polyaniline–Iron–Carbon Oxygen Reduction Catalyst. Journal of Physical Chemistry C, 2012, 116, 16001-16013.	1.5	378
30	Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy and Fuels, 2020, 4, 15-30.	2.5	375
31	Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc–Air Batteries. Angewandte Chemie - International Edition, 2015, 54, 9654-9658.	7.2	372
32	Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN ₄ Sites for Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 18971-18980.	7.2	362
33	Nanocarbon Electrocatalysts for Oxygen Reduction in Alkaline Media for Advanced Energy Conversion and Storage. Advanced Energy Materials, 2014, 4, 1301415.	10.2	351
34	3D printing technologies for electrochemical energy storage. Nano Energy, 2017, 40, 418-431.	8.2	351
35	Zincâ€Mediated Template Synthesis of Feâ€N Electrocatalysts with Densely Accessible Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Advanced Materials, 2020, 32, e1907399.	11.1	319
36	Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks. Nano Energy, 2017, 31, 331-350.	8.2	317

#	Article	IF	CITATIONS
37	Low-temperature ammonia decomposition catalysts for hydrogen generation. Applied Catalysis B: Environmental, 2018, 226, 162-181.	10.8	307
38	Ordered Pt ₃ Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction. Nano Letters, 2018, 18, 4163-4171.	4.5	304
39	N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Applied Catalysis B: Environmental, 2019, 241, 442-451.	10.8	284
40	Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation. Electrochemistry Communications, 2005, 7, 1237-1243.	2.3	275
41	Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and Highâ€Power PGMâ€Free Cathodes in Fuel Cells. Advanced Materials, 2020, 32, e2003577.	11.1	262
42	Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nature Energy, 2022, 7, 652-663.	19.8	258
43	High-Loading Cobalt Oxide Coupled with Nitrogen-Doped Graphene for Oxygen Reduction in Anion-Exchange-Membrane Alkaline Fuel Cells. Journal of Physical Chemistry C, 2013, 117, 8697-8707.	1.5	251
44	Atomically Dispersed Metal Catalysts for Oxygen Reduction. ACS Energy Letters, 2019, 4, 1619-1633.	8.8	251
45	Engineering Local Coordination Environments of Atomically Dispersed and Heteroatomâ€Coordinated Single Metal Site Electrocatalysts for Clean Energy onversion. Advanced Energy Materials, 2020, 10, 1902844.	10.2	245
46	Atomically Dispersed Fe–Co Dual Metal Sites as Bifunctional Oxygen Electrocatalysts for Rechargeable and Flexible Zn–Air Batteries. ACS Catalysis, 2022, 12, 1216-1227.	5.5	232
47	Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions. Advanced Materials, 2021, 33, e2000381.	11.1	231
48	Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation. Electrochimica Acta, 2004, 50, 1-10.	2.6	226
49	Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction. Carbon, 2011, 49, 3972-3982.	5.4	225
50	Restoring the Nitrogen Cycle by Electrochemical Reduction of Nitrate: Progress and Prospects. Small Methods, 2020, 4, 2000672.	4.6	225
51	Highly Active and Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Templateâ€Free Graphitization for Bifunctional Oxygen Reduction and Evolution. Advanced Energy Materials, 2016, 6, 1601198.	10.2	224
52	Oxygen-deficient BaTiO3â^' perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy, 2015, 13, 423-432.	8.2	221
53	3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy and Environmental Science, 2019, 12, 2830-2841.	15.6	219
54	Mechanistic understanding of the role separators playing in advanced lithiumâ€sulfur batteries. InformaÄnÃ-Materiály, 2020, 2, 483-508.	8.5	219

#	Article	IF	CITATIONS
55	Well-Dispersed High-Loading Pt Nanoparticles Supported by Shellâ^'Core Nanostructured Carbon for Methanol Electrooxidation. Langmuir, 2008, 24, 3566-3575.	1.6	216
56	Ozonated Graphene Oxide Film as a Protonâ€Exchange Membrane. Angewandte Chemie - International Edition, 2014, 53, 3588-3593.	7.2	214
57	Polyaniline-derived Non-Precious Catalyst for the Polymer Electrolyte Fuel Cell Cathode. ECS Transactions, 2008, 16, 159-170.	0.3	209
58	Metal–Organic Frameworkâ€Derived Bambooâ€like Nitrogenâ€Doped Graphene Tubes as an Active Matrix for Hybrid Oxygenâ€Reduction Electrocatalysts. Small, 2015, 11, 1443-1452.	5.2	209
59	Ironâ€Free Cathode Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cells: Cobalt Catalysts and the Peroxide Mitigation Approach. Advanced Materials, 2019, 31, e1805126.	11.1	208
60	Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy, 2016, 24, 1-9.	8.2	199
61	Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis. Joule, 2019, 3, 956-991.	11.7	197
62	A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability. Chemical Communications, 2013, 49, 3291.	2.2	196
63	Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media. Chemistry - an Asian Journal, 2016, 11, 10-21.	1.7	190
64	FeN ₄ Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium. Advanced Energy Materials, 2018, 8, 1801912.	10.2	188
65	High-performance non-spinel cobalt–manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc–air batteries. Nano Energy, 2016, 20, 315-325.	8.2	187
66	A Roadmap to Lowâ€Cost Hydrogen with Hydroxide Exchange Membrane Electrolyzers. Advanced Materials, 2019, 31, e1805876.	11.1	184
67	Dynamic Activation of Adsorbed Intermediates via Axial Traction for the Promoted Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 4192-4198.	7.2	183
68	Anodically electrodeposited Co+Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media. Journal of Solid State Chemistry, 2004, 177, 3682-3692.	1.4	179
69	Morphology-Dependent Performance of CuO Anodes via Facile and Controllable Synthesis for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 1243-1250.	4.0	172
70	Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation. Applied Catalysis B: Environmental, 2019, 243, 195-203.	10.8	170
71	Electrodeposited Co–Ni–Al2O3 composite coatings. Surface and Coatings Technology, 2004, 176, 157-164.	2.2	168
72	Atomically dispersed single iron sites for promoting Pt and Pt ₃ Co fuel cell catalysts: performance and durability improvements. Energy and Environmental Science, 2021, 14, 4948-4960.	15.6	168

#	Article	IF	CITATIONS
73	Structure of Fe–N _{<i>x</i>} –C Defects in Oxygen Reduction Reaction Catalysts from First-Principles Modeling. Journal of Physical Chemistry C, 2014, 118, 14388-14393.	1.5	167
74	3D direct writing fabrication of electrodes for electrochemical storage devices. Journal of Power Sources, 2017, 354, 134-147.	4.0	164
75	Antiperovskite Li ₃ OCl Superionic Conductor Films for Solidâ€ S tate Liâ€ l on Batteries. Advanced Science, 2016, 3, 1500359.	5.6	162
76	Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy, 2019, 57, 157-165.	8.2	162
77	Carbon nanotube supported Pt electrodes for methanol oxidation: A comparison between multi- and single-walled carbon nanotubes. Journal of Power Sources, 2007, 174, 148-158.	4.0	161
78	Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries. Nano Energy, 2014, 9, 334-344.	8.2	161
79	Morphology Control of Carbon-Free Spinel NiCo ₂ O ₄ Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media. ACS Applied Materials & Interfaces, 2017, 9, 44567-44578.	4.0	161
80	Core–shell structured hollow SnO2–polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries. Nano Energy, 2014, 6, 73-81.	8.2	160
81	Review—Ammonia Oxidation Electrocatalysis for Hydrogen Generation and Fuel Cells. Journal of the Electrochemical Society, 2018, 165, J3130-J3147.	1.3	160
82	Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy, 2017, 42, 69-89.	8.2	157
83	Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation. Carbon, 2005, 43, 2579-2587.	5.4	154
84	Performance Durability of Polyaniline-derived Non-precious Cathode Catalysts. ECS Transactions, 2009, 25, 1299-1311.	0.3	150
85	Role of Local Carbon Structure Surrounding FeN ₄ Sites in Boosting the Catalytic Activity for Oxygen Reduction. Journal of Physical Chemistry C, 2017, 121, 11319-11324.	1.5	150
86	Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N ₂ and H ₂ O. Small Methods, 2020, 4, 1900821.	4.6	148
87	Photocatalysis and Photoelectrocatalysis Methods of Nitrogen Reduction for Sustainable Ammonia Synthesis. Small Methods, 2019, 3, 1800352.	4.6	144
88	Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 448-469.	5.2	143
89	Stability of iron species in heat-treated polyaniline–iron–carbon polymer electrolyte fuel cell cathode catalysts. Electrochimica Acta, 2013, 110, 282-291.	2.6	138
90	Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. EnergyChem, 2020, 2, 100023.	10.1	138

#	Article	IF	CITATIONS
91	Energy storage materials derived from Prussian blue analogues. Science Bulletin, 2017, 62, 358-368.	4.3	136
92	Carbonâ€Rich Nonprecious Metal Single Atom Electrocatalysts for CO ₂ Reduction and Hydrogen Evolution. Small Methods, 2019, 3, 1900210.	4.6	136
93	Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides. Nano Energy, 2020, 77, 105162.	8.2	134
94	Enhanced methanol electro-oxidation activity of PtRu catalysts supported on heteroatom-doped carbon. Electrochimica Acta, 2008, 53, 7622-7629.	2.6	133
95	Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon. ACS Catalysis, 2017, 7, 8386-8393.	5.5	131
96	Highly Dispersed Pd-CeO ₂ Nanoparticles Supported on N-Doped Core–Shell Structured Mesoporous Carbon for Methanol Oxidation in Alkaline Media. ACS Catalysis, 2019, 9, 6362-6371.	5.5	131
97	Li-rich anti-perovskite Li ₃ OCl films with enhanced ionic conductivity. Chemical Communications, 2014, 50, 11520-11522.	2.2	130
98	Graphene/Fe ₂ O ₃ /SnO ₂ Ternary Nanocomposites as a High-Performance Anode for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 8607-8614.	4.0	129
99	Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 42796-42803.	4.0	129
100	Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy and Environmental Science, 2020, 13, 3544-3555.	15.6	129
101	Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst. Chemical Communications, 2010, 46, 7489.	2.2	128
102	Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction in PEM Fuel Cells: Self-Template Synthesis Approach to Enhancing Catalytic Activity and Stability. Electrochemical Energy Reviews, 2019, 2, 231-251.	13.1	128
103	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie - International Edition, 2020, 59, 21698-21705.	7.2	128
104	Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films. Journal of Power Sources, 2006, 155, 118-127.	4.0	127
105	Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review. Journal of Power Sources, 2018, 375, 277-290.	4.0	127
106	Engineering Favorable Morphology and Structure of Feâ€N Oxygenâ€Reduction Catalysts through Tuning of Nitrogen/Carbon Precursors. ChemSusChem, 2017, 10, 774-785.	3.6	124
107	Electrochemical ammonia synthesis through N2 and H2O under ambient conditions: Theory, practices, and challenges for catalysts and electrolytes. Nano Energy, 2020, 69, 104469.	8.2	123
108	Atomically Dispersed MnN ₄ Catalysts <i>via</i> Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements. ACS Catalysis, 2020, 10, 10523-10534.	5.5	123

#	Article	IF	CITATIONS
109	Nitrogen-doped magnetic onion-like carbon as support for Pt particles in a hybrid cathode catalyst for fuel cells. Journal of Materials Chemistry, 2010, 20, 3059.	6.7	122
110	Engineering Atomically Dispersed FeN ₄ Active Sites for CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2021, 60, 1022-1032.	7.2	121
111	Chemical Vapor Deposition for N/S-Doped Single Fe Site Catalysts for the Oxygen Reduction in Direct Methanol Fuel Cells. ACS Catalysis, 2021, 11, 7450-7459.	5.5	120
112	Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design Highâ€Efficient Atomically Dispersed CoN ₄ Active Sites. Angewandte Chemie - International Edition, 2021, 60, 9516-9526.	7.2	119
113	Promoting Atomically Dispersed MnN ₄ Sites <i>via</i> Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells. ACS Nano, 2021, 15, 6886-6899.	7.3	119
114	Metal–Organic Frameworks and Their Derived Materials as Electrocatalysts and Photocatalysts for CO ₂ Reduction: Progress, Challenges, and Perspectives. Chemistry - A European Journal, 2018, 24, 18137-18157.	1.7	117
115	Phosphate-Tolerant Oxygen Reduction Catalysts. ACS Catalysis, 2014, 4, 3193-3200.	5.5	116
116	Tungsten carbide as supports for Pt electrocatalysts with improved CO tolerance in methanol oxidation. Journal of Power Sources, 2011, 196, 6125-6130.	4.0	115
117	Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: An overlooked influence. Carbon, 2016, 99, 338-347.	5.4	115
118	Lattice Boltzmann Pore-Scale Investigation of Coupled Physical-electrochemical Processes in C/Pt and Non-Precious Metal Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells. Electrochimica Acta, 2015, 158, 175-186.	2.6	114
119	Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction. Nanoscale, 2015, 7, 20290-20298.	2.8	112
120	3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Applied Catalysis B: Environmental, 2017, 219, 629-639.	10.8	111
121	Advanced Mesoporous Spinel Li ₄ Ti ₅ O ₁₂ /rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 9162-9169.	4.0	108
122	A Grapheneâ€Supported Singleâ€Atom FeN ₅ Catalytic Site for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie, 2019, 131, 15013-15018.	1.6	107
123	One-step synthesis of Mn3O4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li–O2 batteries. Chemical Communications, 2013, 49, 10838.	2.2	106
124	Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. Nano Energy, 2020, 68, 104384.	8.2	106
125	Highâ€Performance Direct Methanol Fuel Cells with Preciousâ€Metalâ€Free Cathode. Advanced Science, 2016, 3, 1600140.	5.6	105
126	Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries. Physical Chemistry Chemical Physics, 2014, 16, 13568-13582.	1.3	104

#	Article	IF	CITATIONS
127	Ternary PtlrNi Catalysts for Efficient Electrochemical Ammonia Oxidation. ACS Catalysis, 2020, 10, 3945-3957.	5.5	104
128	Enhanced performance of atomically dispersed dual-site Fe-Mn electrocatalysts through cascade reaction mechanism. Applied Catalysis B: Environmental, 2021, 288, 120021.	10.8	104
129	Ru nanoassembly catalysts for hydrogen evolution and oxidation reactions in electrolytes at various pH values. Applied Catalysis B: Environmental, 2019, 258, 117952.	10.8	102
130	Carbon-supported Co1.67Te2 nanoparticles as electrocatalysts for oxygen reduction reaction in alkaline electrolyte. Journal of Materials Chemistry, 2009, 19, 6581.	6.7	101
131	Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. Energy and Environmental Science, 2022, 15, 2356-2365.	15.6	101
132	Amorphous Co–Fe–P nanospheres for efficient water oxidation. Journal of Materials Chemistry A, 2017, 5, 25378-25384.	5.2	100
133	A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS. Journal of Materials Chemistry C, 2018, 6, 5122-5131.	2.7	100
134	High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy and Environmental Science, 2021, 14, 1449-1460.	15.6	100
135	Innovation and challenges in materials design for flexible rechargeable batteries: from 1D to 3D. Journal of Materials Chemistry A, 2018, 6, 735-753.	5.2	99
136	Atomically Dispersed Zinc(I) Active Sites to Accelerate Nitrogen Reduction Kinetics for Ammonia Electrosynthesis. Advanced Materials, 2022, 34, e2103548.	11.1	99
137	Atomically dispersed single Ni site catalysts for high-efficiency CO ₂ electroreduction at industrial-level current densities. Energy and Environmental Science, 2022, 15, 2108-2119.	15.6	99
138	Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids. Carbon, 2006, 44, 2973-2983.	5.4	97
139	Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12. Chemical Communications, 2012, 48, 9840.	2.2	95
140	Elucidation of the Synergistic Effect of Dopants and Vacancies on Promoted Selectivity for CO ₂ Electroreduction to Formate. Advanced Materials, 2021, 33, e2005113.	11.1	95
141	Ni–CeO2 composite cathode material for hydrogen evolution reaction in alkaline electrolyte. International Journal of Hydrogen Energy, 2012, 37, 13921-13932.	3.8	94
142	Single-Iron Site Catalysts with Self-Assembled Dual-size Architecture and Hierarchical Porosity for Proton-Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 2020, 279, 119400.	10.8	94
143	Improving the Stability of Nonâ€Nobleâ€Metal M–N–C Catalysts for Protonâ€Exchangeâ€Membrane Fuel Ce through M–N Bond Length and Coordination Regulation. Advanced Materials, 2021, 33, e2006613.	ells 11.1	94
144	Structure-Dependent Electrocatalytic Properties of Cu ₂ 0 Nanocrystals for Oxygen Reduction Reaction. Journal of Physical Chemistry C. 2013, 117, 13872-13878.	1.5	92

#	Article	IF	CITATIONS
145	High Power Density Platinum Group Metal-free Cathodes for Polymer Electrolyte Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 2216-2224.	4.0	91
146	Conductive Porous Laminated Vanadium Nitride as Carbon-Free Hosts for High-Loading Sulfur Cathodes in Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 17308-17320.	7.3	86
147	Carbonâ€5upported Single Metal Site Catalysts for Electrochemical CO ₂ Reduction to CO and Beyond. Small, 2021, 17, e2005148.	5.2	86
148	Highly active metallic nickel sites confined in N-doped carbon nanotubes toward significantly enhanced activity of CO2 electroreduction. Carbon, 2019, 150, 52-59.	5.4	84
149	Pt alloy oxygen-reduction electrocatalysts: Synthesis, structure, and property. Chinese Journal of Catalysis, 2020, 41, 739-755.	6.9	84
150	Tuning Twoâ€Electron Oxygenâ€Reduction Pathways for H ₂ O ₂ Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts. Advanced Materials, 2022, 34, e2107954.	11.1	84
151	Atomically Dispersed Dualâ€Metal Site Catalysts for Enhanced CO ₂ Reduction: Mechanistic Insight into Active Site Structures. Angewandte Chemie - International Edition, 2022, 61, .	7.2	83
152	Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO ₂ reduction to CO. Journal of Materials Chemistry A, 2019, 7, 25191-25202.	5.2	82
153	Highly accessible and dense surface single metal FeN ₄ active sites for promoting the oxygen reduction reaction. Energy and Environmental Science, 2022, 15, 2619-2628.	15.6	82
154	High performance Li3V2(PO4)3/C composite cathode material for lithium ion batteries studied in pilot scale test. Electrochimica Acta, 2010, 55, 8595-8599.	2.6	81
155	Cu-Deficient Plasmonic Cu2–xS Nanoplate Electrocatalysts for Oxygen Reduction. ACS Catalysis, 2015, 5, 2534-2540.	5.5	81
156	Highâ€Performance Microsized Si Anodes for Lithiumâ€lon Batteries: Insights into the Polymer Configuration Conversion Mechanism. Advanced Materials, 2022, 34, e2109658.	11.1	81
157	Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Applied Catalysis B: Environmental, 2021, 289, 119783.	10.8	80
158	Electrooxidations of ethanol, acetaldehyde and acetic acid using PtRuSn/C catalysts prepared by modified alcohol-reduction process. Journal of Power Sources, 2007, 172, 180-188.	4.0	79
159	Graphene-Riched Co ₉ S ₈ -N-C Non-Precious Metal Catalyst for Oxygen Reduction in Alkaline Media. ECS Transactions, 2011, 41, 1709-1717.	0.3	79
160	3D graphene framework supported Li ₂ S coated with ultra-thin Al ₂ O ₃ films: binder-free cathodes for high-performance lithium sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 102-112.	5.2	77
161	Amorphous Ni(â¢)-based sulfides as bifunctional water and urea oxidation anode electrocatalysts for hydrogen generation from urea-containing water. Applied Catalysis B: Environmental, 2022, 312, 121389.	10.8	76
162	Sn-doped TiO2 modified carbon to support Pt anode catalysts for direct methanol fuel cells. Journal of Power Sources, 2015, 286, 354-361.	4.0	75

#	Article	IF	CITATIONS
163	Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells. Frontiers in Energy, 2017, 11, 286-298.	1.2	75
164	A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst. Journal of Physical Chemistry C, 2017, 121, 16283-16290.	1.5	75
165	Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium–sulfur battery cathodes. Nanoscale, 2018, 10, 5634-5641.	2.8	74
166	PGM-Free Oxygen-Reduction Catalyst Development for Proton-Exchange Membrane Fuel Cells: Challenges, Solutions, and Promises. Accounts of Materials Research, 2022, 3, 224-236.	5.9	73
167	Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries. Journal of Power Sources, 2015, 297, 436-441.	4.0	72
168	Structurally Defined 3D Nanographene Assemblies via Bottomâ€Up Chemical Synthesis for Highly Efficient Lithium Storage. Advanced Materials, 2016, 28, 10250-10256.	11.1	72
169	Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 26231-26237.	5.2	72
170	Supported and coordinated single metal site electrocatalysts. Materials Today, 2020, 37, 93-111.	8.3	71
171	Wrought Mg-Al-Pb-RE alloy strips as the anodes for Mg-air batteries. Journal of Power Sources, 2019, 436, 226855.	4.0	70
172	Nanostructured Carbon Based Heterogeneous Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. ChemCatChem, 2019, 11, 5855-5874.	1.8	70
173	Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media. Nano Energy, 2019, 66, 104164.	8.2	68
174	Synergistically Assembled Li ₂ S/FWNTs@Reduced Graphene Oxide Nanobundle Forest for Free‣tanding Highâ€Performance Li ₂ S Cathodes. Advanced Functional Materials, 2017, 27, 1700987.	7.8	67
175	Recent advances in Cu-based nanocomposite photocatalysts for CO2 conversion to solar fuels. Journal of Energy Chemistry, 2017, 26, 1039-1049.	7.1	67
176	Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing. Analytica Chimica Acta, 2014, 825, 26-33.	2.6	66
177	Electrochemical preparation and characteristics of Ni–Co–LaNi5 composite coatings as electrode materials for hydrogen evolution. Materials Chemistry and Physics, 2004, 83, 307-314.	2.0	62
178	Hydrogen storage in a chemical bond stabilized Co ₉ S ₈ –graphene layered structure. Nanoscale, 2015, 7, 20180-20187.	2.8	62
179	Flexible wire-shaped lithium-sulfur batteries with fibrous cathodes assembled via capillary action. Nano Energy, 2017, 33, 325-333.	8.2	62
180	Atomic Structure Evolution of Pt–Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals. Advanced Materials, 2021, 33, e2106371.	11.1	62

#	Article	IF	CITATIONS
181	Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 30212-30224.	4.0	61
182	High-Performance Binary Mo–Ni Catalysts for Efficient Carbon Removal during Carbon Dioxide Reforming of Methane. ACS Catalysis, 2021, 11, 12087-12095.	5.5	61
183	Molecular single iron site catalysts for electrochemical nitrogen fixation under ambient conditions. Applied Catalysis B: Environmental, 2021, 285, 119794.	10.8	58
184	Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN ₄ Sites for Oxygen Reduction. Angewandte Chemie, 2019, 131, 19147-19156.	1.6	57
185	Magnetic field assisted electrocatalytic oxygen evolution reaction of nickel-based materials. Journal of Materials Chemistry A, 2022, 10, 1760-1767.	5.2	57
186	Self-supported Pt nanoclusters via galvanic replacement from Cu2O nanocubes as efficient electrocatalysts. Nanoscale, 2013, 5, 7397.	2.8	56
187	Graphene Oxides Used as a New "Dual Role―Binder for Stabilizing Silicon Nanoparticles in Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 15665-15672.	4.0	56
188	Porous Fe-Doped β-Ni(OH) ₂ Nanopyramid Array Electrodes for Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 36208-36219.	4.0	56
189	Hierarchical Crossâ€Linked Carbon Aerogels with Transition Metalâ€Nitrogen Sites for Highly Efficient Industrialâ€Level CO ₂ Electroreduction. Advanced Functional Materials, 2021, 31, 2104377.	7.8	56
190	Synthetic routes of the reduced graphene oxide. Chemical Papers, 2020, 74, 3767-3783.	1.0	56
191	Mn ₃ O ₄ Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23900-23909.	4.0	55
192	Rational design of MXene@TiO ₂ nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries. Nanoscale, 2020, 12, 16678-16684.	2.8	55
193	Advanced Nanocarbons for Enhanced Performance and Durability of Platinum Catalysts in Proton Exchange Membrane Fuel Cells. Small, 2021, 17, e2006805.	5.2	54
194	3D porous cellular NiCoO2/graphene network as a durable bifunctional electrocatalyst for oxygen evolution and reduction reactions. Journal of Power Sources, 2018, 399, 66-75.	4.0	52
195	Carbon Catalysts for Electrochemical CO ₂ Reduction toward Multicarbon Products. Advanced Energy Materials, 2022, 12, .	10.2	50
196	Functionalized fullerenes for highly efficient lithium ion storage: Structure-property-performance correlation with energy implications. Nano Energy, 2017, 40, 327-335.	8.2	49
197	Adsorption behavior of triblock copolymer suppressors during the copper electrodeposition. Electrochimica Acta, 2014, 116, 284-291.	2.6	48
198	The preparation of Co9S8 and CoS2 nanoparticles by a high energy ball-milling method and their electrochemical hydrogen storage properties. International Journal of Hydrogen Energy, 2014, 39, 9300-9306.	3.8	47

#	Article	IF	CITATIONS
199	Co ₃ O ₄ Nanoparticles Anchored on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as an Enhanced Oxygen Electrocatalyst for the Rechargeable and Flexible Solid-State Zn–Air Battery. ACS Applied Energy Materials, 2019, 2, 4428-4438.	2.5	47
200	Air Electrodes for Flexible and Rechargeable Znâ^'Air Batteries. Small Structures, 2022, 3, 2100103.	6.9	46
201	Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts. Nanoscale, 2018, 10, 17318-17326.	2.8	45
202	Palladium thorn clusters as catalysts for electrooxidation of formic acid. Energy and Environmental Science, 2011, 4, 1522.	15.6	44
203	The long life-span of a Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped binder network. Journal of Materials Chemistry A, 2017, 5, 9339-9349.	5.2	44
204	Nitrogen-doped carbon coated LiNi0.6Co0.2Mn0.2O2 cathode with enhanced electrochemical performance for Li-lon batteries. Electrochimica Acta, 2018, 284, 526-533.	2.6	44
205	Engineering reduced graphene oxides with enhanced electrochemical properties through multiple-step reductions. Electrochimica Acta, 2017, 258, 735-743.	2.6	43
206	MoS ₂ Nanosheet–Carbon Foam Composites for Solar Steam Generation. ACS Applied Nano Materials, 2020, 3, 9706-9714.	2.4	42
207	Electrochemical synthesis of Ni–S/CeO2 composite electrodes for hydrogen evolution reaction. Journal of Power Sources, 2013, 230, 10-14.	4.0	41
208	Is reduced graphene oxide favorable for nonprecious metal oxygen-reduction catalysts?. Carbon, 2016, 102, 346-356.	5.4	41
209	Energy- and cost-efficient NaCl-assisted synthesis of MAX-phase Ti3AlC2 at lower temperature. Ceramics International, 2020, 46, 6934-6939.	2.3	41
210	Engineering Atomically Dispersed FeN ₄ Active Sites for CO ₂ Electroreduction. Angewandte Chemie, 2021, 133, 1035-1045.	1.6	39
211	Electrocatalytic H2O2 generation for disinfection. Chinese Journal of Catalysis, 2021, 42, 2149-2163.	6.9	39
212	Effect of α-Al2O3 particles on the electrochemical codeposition of Co–Ni alloys from sulfamate electrolytes. Materials Chemistry and Physics, 2004, 87, 411-419.	2.0	38
213	Highâ€Activity PtRuPd/C Catalyst for Direct Dimethyl Ether Fuel Cells. Angewandte Chemie - International Edition, 2015, 54, 7524-7528.	7.2	38
214	Synergistic effect of graphene and polypyrrole to enhance the SnO ₂ anode performance in lithium-ion batteries. RSC Advances, 2016, 6, 9402-9410.	1.7	38
215	Quasi-zero-dimensional cobalt-doped CeO ₂ dots on Pd catalysts for alcohol electro-oxidation with enhanced poisoning-tolerance. Nanoscale, 2017, 9, 12565-12572.	2.8	38
216	Unique Li ₄ Ti ₅ O ₁₂ /TiO ₂ multilayer arrays with advanced surface lithium storage capability. Journal of Materials Chemistry A, 2018, 6, 22053-22061.	5.2	38

#	Article	IF	CITATIONS
217	Effective Approaches for Designing Stable M–N <i>_x</i> /C Oxygenâ€Reduction Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cells. Advanced Materials, 2022, 34, e2200595.	11.1	38
218	Theoretical and experimental studies of the corrosion inhibition effect of nitrotetrazolium blue chloride on copper in 0.1 M H ₂ SO ₄ . RSC Advances, 2014, 4, 40606-40616.	1.7	36
219	Polymerizable Ionic Liquid as Nitrogen-Doping Precursor for Co–N–C Catalyst with Enhanced Oxygen Reduction Activity. Industrial & Engineering Chemistry Research, 2015, 54, 7984-7989.	1.8	36
220	Highly-branched cross-linked poly(ethylene oxide) with enhanced ionic conductivity. Polymer, 2017, 111, 1-8.	1.8	36
221	Atomically dispersed dualâ€metalâ€site PGMâ€free electrocatalysts for oxygen reduction reaction: Opportunities and challenges. SusMat, 2022, 2, 569-590.	7.8	36
222	Development of Method for Synthesis of Pt–Co Cathode Catalysts for PEM Fuel Cells. Electrochemical and Solid-State Letters, 2007, 10, B201.	2.2	35
223	Multinuclear Solid-State Nuclear Magnetic Resonance and Density Functional Theory Characterization of Interaction Tensors in Taurine. Journal of Physical Chemistry A, 2012, 116, 1008-1014.	1.1	35
224	Numerical Analysis of Electric Double Layer Capacitors with Mesoporous Electrodes: Effects of Electrode and Electrolyte Properties. Journal of Physical Chemistry C, 2015, 119, 25235-25242.	1.5	35
225	Advanced Sulfonated Poly(Ether Ether Ketone)/Graphene-Oxide/Titanium Dioxide Nanoparticle Composited Membrane with Superior Cyclability for Vanadium Redox Flow Battery. Journal of Nanoscience and Nanotechnology, 2020, 20, 4714-4721.	0.9	35
226	N- & S-co-doped carbon nanofiber network embedded with ultrafine NiCo nanoalloy for efficient oxygen electrocatalysis and Zn–air batteries. Nanoscale, 2020, 12, 9581-9589.	2.8	35
227	Feâ€based catalysts for nitrogen reduction toward ammonia electrosynthesis under ambient conditions. SusMat, 2022, 2, 214-242.	7.8	35
228	Water Oxidation on Oxygen-Deficient Barium Titanate: A First-Principles Study. Journal of Physical Chemistry C, 2017, 121, 8378-8389.	1.5	34
229	A confined "microreactor―synthesis strategy to three dimensional nitrogen-doped graphene for high-performance sodium ion battery anodes. Journal of Power Sources, 2018, 378, 105-111.	4.0	34
230	PAMAM-stabilized Pt–Ru nanoparticles for methanol electro-oxidation. Journal of Power Sources, 2010, 195, 425-434.	4.0	33
231	Three-dimensional nanoporous Au films as high-efficiency enzyme-free electrochemical sensors. Electrochimica Acta, 2015, 170, 337-342.	2.6	33
232	CeO ₂ -modified α-MoO ₃ nanorods as a synergistic support for Pt nanoparticles with enhanced CO _{ads} tolerance during methanol oxidation. Physical Chemistry Chemical Physics, 2017, 19, 330-339.	1.3	33
233	Surface engineering of Cu catalysts for electrochemical reduction of CO2 to value-added multi-carbon products. Chem Catalysis, 2022, 2, 1561-1593.	2.9	33
234	Nanoporous gold on three-dimensional nickel foam: An efficient hybrid electrode for hydrogen peroxide electroreduction in acid media. Journal of Power Sources, 2014, 269, 461-465.	4.0	32

#	Article	IF	CITATIONS
235	Direct Dimethyl Ether Fuel Cell with Much Improved Performance. Electrocatalysis, 2014, 5, 310-317.	1.5	32
236	Pd-decorated three-dimensional nanoporous Au/Ni foam composite electrodes for H ₂ O ₂ reduction. Journal of Materials Chemistry A, 2014, 2, 16474-16479.	5.2	31
237	Atomically Dispersed Iron Cathode Catalysts Derived from Binary Ligand-Based Zeolitic Imidazolate Frameworks with Enhanced Stability for PEM Fuel Cells. Journal of the Electrochemical Society, 2019, 166, F3116-F3122.	1.3	31
238	Freeâ€Energy Landscapes of Ion Movement through a Gâ€Quadruplex DNA Channel. Angewandte Chemie - International Edition, 2012, 51, 2850-2854.	7.2	30
239	Unprecedented Enhancement of Thermoelectric Power Factor Induced by Pressure in Smallâ€Molecule Organic Semiconductors. Advanced Materials, 2019, 31, e1901956.	11.1	30
240	Carbon Nanotube-Connected Yolk–Shell Carbon Nanopolyhedras with Cobalt and Nitrogen Doping as Sulfur Immobilizers for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2018, 1, 6487-6496.	2.5	29
241	Binary Atomically Dispersed Metalâ€6ite Catalysts with Coreâ^'Shell Nanostructures for O ₂ and CO ₂ Reduction Reactions. Small Science, 2021, 1, 2100046.	5.8	29
242	Role of polyethyleneimine as an additive in cyanide-free electrolytes for gold electrodeposition. RSC Advances, 2015, 5, 64806-64813.	1.7	28
243	Solid-state 170 NMR as a sensitive probe of keto and gem-diol forms of α-keto acid derivatives. Physical Chemistry Chemical Physics, 2009, 11, 6972.	1.3	27
244	Heat-Treated Non-precious-Metal-Based Catalysts for Oxygen Reduction. Lecture Notes in Energy, 2013, , 213-246.	0.2	27
245	Computational Chemistry and Electrochemical Studies of Adsorption Behavior of Organic Additives during Gold Deposition in Cyanide-free Electrolytes. Electrochimica Acta, 2015, 176, 10-17.	2.6	27
246	Large-diameter and heteroatom-doped graphene nanotubes decorated with transition metals as carbon hosts for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13389-13399.	5.2	27
247	Enhanced Li-ion battery performance of TiO2 nanoparticle-loaded Li4Ti5O12 nanosheet anode using carbon coated copper as current collector. Journal of Power Sources, 2020, 479, 229090.	4.0	27
248	An effective triblock copolymer as a suppressor for microvia filling via copper electrodeposition. Electrochimica Acta, 2013, 109, 226-232.	2.6	26
249	Triblock Copolymers as Suppressors for Microvia Filling via Copper Electroplating. Journal of the Electrochemical Society, 2013, 160, D188-D195.	1.3	26
250	Three-dimensional nanoporous gold–cobalt oxide electrode for high-performance electroreduction of hydrogen peroxide in alkaline medium. Journal of Power Sources, 2015, 294, 136-140.	4.0	26
251	Keep Cool: Polyhedral ZnO@ZIF-8 Polymer Coatings for Daytime Radiative Cooling. Industrial & Engineering Chemistry Research, 2020, 59, 15226-15232.	1.8	26
252	Solving the activity–stability trade-off riddle. Nature Catalysis, 2021, 4, 6-7.	16.1	24

#	Article	IF	CITATIONS
253	Obtaining accurate chemical shifts for all magnetic nuclei (¹ H, ¹³ C,) Tj ETQq1 1 0.784 solid-state NMR case study. Canadian Journal of Chemistry, 2011, 89, 1087-1094.	314 rgBT 0.6	/Overlock 10 23
254	Role of two carbon phases in oxygen reduction reaction on the Co–PPy–C catalyst. International Journal of Hydrogen Energy, 2014, 39, 15887-15893.	3.8	23
255	Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO ₂ reduction. Chemical Communications, 2021, 57, 1839-1854.	2.2	23
256	An integrated bioelectrochemical system coupled CO2 electroreduction device based on atomically dispersed iron electrocatalysts. Nano Energy, 2021, 87, 106187.	8.2	23
257	Self-Assembled Reduced Graphene Oxide/Polyacrylamide Conductive Composite Films. ACS Applied Materials & Interfaces, 2014, 6, 19783-19790.	4.0	22
258	The opposite and amplifying effect of B ↕N coordination on photophysical properties of regioisomers with an unsymmetrical backbone. Chemical Science, 2019, 10, 1724-1734.	3.7	22
259	A partial sulfidation approach that significantly enhance the activity of FeCo layered double hydroxide for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 31987-31994.	3.8	22
260	Free-standing and ionomer-free 3D platinum nanotrough fiber network electrode for proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2021, 298, 120504.	10.8	22
261	Anion bridged nanosheet from self-assembled G-quadruplexes. Chemical Communications, 2007, , 3148.	2.2	21
262	Assembled hollow and core-shell SnO2 microspheres as anode materials for Li-ion batteries. Materials Letters, 2013, 93, 243-246.	1.3	21
263	A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys. Nanotechnology, 2014, 25, 445602.	1.3	21
264	Promotional role of B2O3 in enhancing hollow SnO2 anode performance for Li-ion batteries. Journal of Power Sources, 2014, 251, 279-286.	4.0	21
265	Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design Highâ€Efficient Atomically Dispersed CoN ₄ Active Sites. Angewandte Chemie, 2021, 133, 9602-9612.	1.6	21
266	Influence of Enhanced O ₂ Provision on the Discharge Performance of Li–air Batteries by Incorporating Fluoroether. ChemSusChem, 2017, 10, 1385-1389.	3.6	20
267	Enhanced hydrogen storage in sandwich-structured rGO/Co1â^'xS/rGO hybrid papers through hydrogen spillover. Journal of Power Sources, 2017, 358, 93-100.	4.0	20
268	Dynamic Activation of Adsorbed Intermediates via Axial Traction for the Promoted Electrochemical CO ₂ Reduction. Angewandte Chemie, 2021, 133, 4238-4244.	1.6	20
269	Commercialâ€Like Selfâ€Cleaning Colored ZrO ₂ â€Based Bilayer Coating for Remarkable Daytime Subâ€Ambient Radiative Cooling. Advanced Materials Technologies, 2022, 7, .	3.0	20
270	Engineering local coordination environment of atomically dispersed platinum catalyst via lattice distortion of support for efficient hydrogen evolution reaction. Materials Today Energy, 2021, 20, 100653.	2.5	19

#	Article	IF	CITATIONS
271	Core–Shell Structured Fe–N–C Catalysts with Enriched Iron Sites in Surface Layers for Proton-Exchange Membrane Fuel Cells. ACS Catalysis, 2022, 12, 6409-6417.	5.5	19
272	Polypyrrole Composite Film for Highly Sensitive and Selective Electrochemical Determination Sensors. Electrochimica Acta, 2014, 130, 187-193.	2.6	18
273	Mechanically Robust Fish-Scale Microstructured TiO ₂ -Coated Stainless Steel Mesh by Atomic Layer Deposition for Oil–Water Separation. Industrial & Engineering Chemistry Research, 2020, 59, 21088-21096.	1.8	18
274	Modeling Hierarchical Non-Precious Metal Catalyst Cathodes for PEFCs Using Multi-Scale X-ray CT Imaging. ECS Transactions, 2014, 64, 281-292.	0.3	17
275	Understanding the Essential Role of PbI ₂ Films in a High-Performance Lead Halide Perovskite Photodetector. Journal of Physical Chemistry C, 2020, 124, 15107-15114.	1.5	17
276	Understanding water management in platinum group metal-free electrodes using neutron imaging. Journal of Power Sources, 2020, 472, 228442.	4.0	17
277	Investigation on micromechanism of ferrite hardening after pre-straining with different strain rates of dual-phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140657.	2.6	17
278	Highly Active Carbon Composite Electrocatalysts for PEM Fuel Cells. ECS Transactions, 2007, 11, 241-247.	0.3	16
279	Electrochemical Impedance Spectroscopy and First-Principle Investigations on the Oxidation Mechanism of Hypophosphite Anion in the Electroless Deposition System of Nickel. Journal of Physical Chemistry C, 2008, 112, 4601-4607.	1.5	16
280	Design, synthesis and docking studies on benzamide derivatives as histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4924-4927.	1.0	16
281	Investigation on micromechanism involved in ferrite hardening after prestraining of dual-phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140387.	2.6	15
282	Effects of Redox Mediators on the Catalytic Activity of Iron Porphyrins towards Oxygen Reduction in Acidic Media. ChemElectroChem, 2014, 1, 1508-1515.	1.7	14
283	High performance photocatalytic and thermoelectric two-dimensional asymmetrically ordered Janus-like MXene alloys. Materials Advances, 2020, 1, 1176-1185.	2.6	14
284	Unravelling the Molecular Origin of Organic Semiconductors with Highâ€Performance Thermoelectric Response. Advanced Functional Materials, 2021, 31, 2007438.	7.8	14
285	Structural and Corrosion Properties of NiP _{<i>x</i>} Metallic Glasses: Insights from EIS and DFT. Journal of Physical Chemistry C, 2011, 115, 21169-21176.	1.5	13
286	A Pd-free activation method for electroless nickel deposition on copper. Surface and Coatings Technology, 2013, 228, 27-33.	2.2	13
287	A high power Li–air battery enabled by a fluorocarbon additive. Journal of Materials Chemistry A, 2017, 5, 24617-24620.	5.2	13
288	The Synergistic Effect between a Triblock Copolymer and Chloride lons in Cu Electrodeposition into Microvias. ECS Solid State Letters, 2012, 1, P67-P69.	1.4	12

#	Article	IF	CITATIONS
289	Mesoporous Ag nanocubes synthesized via selectively oxidative etching at room temperature for surface-enhanced Raman spectroscopy. Nano Research, 2015, 8, 2351-2362.	5.8	12
290	Heat-Treated Non-precious Metal Catalysts for Oxygen Reduction. , 2016, , 41-68.		12
291	Ultrasensitive Electrochemiluminescent Immunosensor Using MoS ₂ /g-C ₃ N ₄ Nanosheets. Journal of the Electrochemical Society, 2017, 164, B456-B462.	1.3	12
292	Fe-Doped Metal-Organic Frameworks-Derived Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Journal of the Electrochemical Society, 2018, 165, F1278-F1285.	1.3	12
293	A highly conductive, transparent molecular charge-transfer salt with reversible lithiation. Chemical Communications, 2019, 55, 7179-7182.	2.2	12
294	Uniaxial negative thermal expansion and band renormalization in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>T</mml:mi><mml:mi>d</mml:mi> mathvariant="normal">MoTe<mml:mn>2</mml:mn></mml:msub> at low temperature. Physical Review B, 2020, 101, .</mml:math 	1.1	$ub_{12} mml:mc$
295	Manganese-Based Non-Precious Metal Catalyst for Oxygen Reduction in Acidic Media. ECS Transactions, 2014, 61, 35-42.	0.3	11
296	A high-performance Li2S/MnO2 rechargeable battery. Materials Letters, 2019, 248, 157-160.	1.3	11
297	Synthesis and Anisotropic Electrocatalytic Activity of Covellite Nanoplatelets with Fixed Thickness and Tunable Diameter. ACS Applied Materials & amp; Interfaces, 2018, 10, 42417-42426.	4.0	10
298	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie, 2020, 132, 21882-21889.	1.6	10
299	Single Atomic Iron Site Catalysts via Benign Aqueous Synthesis for Durability Improvement in Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 044501.	1.3	10
300	High-Platinum-Content Catalysts on Atomically Dispersed and Nitrogen Coordinated Single Manganese Site Carbons for Heavy-Duty Fuel Cells. Journal of the Electrochemical Society, 2022, 169, 034510.	1.3	10
301	Replacement Deposition of Ni-S Films on Cu and Their Catalytic Activity for Electroless Nickel Plating. Journal of the Electrochemical Society, 2013, 160, D95-D101.	1.3	9
302	High-definition conductive silver patterns on polyimide film via an ion exchange plating method. RSC Advances, 2016, 6, 7582-7590.	1.7	9
303	Non-planar platinum group metal-free fuel cell cathodes for enhanced oxygen transport and water rejection. Journal of Power Sources, 2021, 506, 230188.	4.0	8
304	Electrochemical Modification of Pt/C Catalyst by Silicomolybdic Acid. Acta Physico-chimica Sinica, 2006, 22, 419-423.	0.6	7
305	Anode Catalysts for the Direct Dimethyl Ether Fuel Cell. ECS Transactions, 2011, 41, 1969-1977.	0.3	7
306	Carbonâ€Supported Singleâ€Atom Catalysts: Carbonâ€Supported Single Metal Site Catalysts for Electrochemical COAsub224sub2 Reduction to CO and Beyond (Small 16/2021), Small 2021, 17, 2170073	5.2	7

#	Article	IF	CITATIONS
307	Progress in Mo/W-based electrocatalysts for nitrogen reduction to ammonia under ambient conditions. Chemical Communications, 2022, 58, 2096-2111.	2.2	7
308	Synthesis and characterization of Au@Pt nanoparticles. Science Bulletin, 2005, 50, 1846.	1.7	6
309	Efficient electroless nickel plating from highly active Ni–B nanoparticles for electric circuit patterns on Al2O3 ceramics. Journal of Materials Chemistry C, 2013, 1, 5149.	2.7	6
310	Defectâ€Rich Copperâ€doped Ruthenium Hollow Nanoparticles for Efficient Hydrogen Evolution Electrocatalysis in Alkaline Electrolyte. Chemistry - an Asian Journal, 2020, 15, 2868-2872.	1.7	6
311	Elucidation of Performance Recovery for Feâ€Based Catalyst Cathodes in Fuel Cells. Advanced Energy and Sustainability Research, 2021, 2, 2100123.	2.8	6
312	3D N-doped Li4Ti5O12 nanoribbon networks self-supported on Ti foils as advanced anode for high-performance flexible lithium-ion batteries. Journal of Alloys and Compounds, 2022, 910, 164873.	2.8	6
313	Atomically Dispersed Dualâ€Metal Site Catalysts for Enhanced CO ₂ Reduction: Mechanistic Insight into Active Site Structures. Angewandte Chemie, 2022, 134, .	1.6	6
314	AuSn20 Eutectic Electrodeposition through Alternative Complexing of Pyrophosphoric Acid: Insights from Electrochemical and DFT Methods. Journal of Physical Chemistry C, 2013, 117, 21228-21233.	1.5	5
315	A block copolymer as an effective additive for electrodepositing ultra-low Sn coatings. RSC Advances, 2015, 5, 83931-83935.	1.7	5
316	Theoretical and Experimental Studies of the Prevention Mechanism of Organic Inhibitors on Silver Anti-Tarnish. Journal of the Electrochemical Society, 2018, 165, H725-H732.	1.3	5
317	Hollow C@TiO ₂ array nanospheres as efficient sulfur hosts for lithium–sulfur batteries. Sustainable Energy and Fuels, 2020, 4, 5493-5497.	2.5	5
318	Neutron Imaging of Water Transport in Polymer-Electrolyte Membranes and Membrane-Electrode Assemblies. ECS Transactions, 2013, 58, 293-299.	0.3	4
319	Single Atom Electrocatalysts: Carbonâ€Rich Nonprecious Metal Single Atom Electrocatalysts for CO ₂ Reduction and Hydrogen Evolution (Small Methods 10/2019). Small Methods, 2019, 3, 1970033.	4.6	4
320	Strain Effects on the n-Type Thermoelectric Performance of the Small-Molecule Organic Semiconductor 2-5-Difluoro-7,7,8,8-Tetracyanoquinodimethane. ACS Applied Energy Materials, 2020, 3, 10174-10182.	2.5	4
321	Effect of Ammonia on the Electrocatalysis of Oxygen Reduction Reaction in Base. Journal of the Electrochemical Society, 2020, 167, 164510.	1.3	4
322	Atomically dispersed Zn-Co-N-C catalyst boosting efficient and robust oxygen reduction catalysis in acid via stabilizing Co-N bonds. Fundamental Research, 2023, 3, 909-917.	1.6	4
323	Discovering p-doped mechanism in non-magnetic Ni–P films for HDD substrate: a combined experimental and theoretical study. RSC Advances, 2014, 4, 14663-14672.	1.7	3
324	Oxygen Evolution: FeN4 Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium (Adv. Energy Mater. 26/2018). Advanced Energy Materials, 2018, 8, 1870119.	10.2	3

#	Article	IF	CITATIONS
325	Singleâ€Atom catalysts: Engineering Local Coordination Environments of Atomically Dispersed and Heteroatomâ€Coordinated Single Metal Site Electrocatalysts for Clean Energyâ€Conversion (Adv. Energy) Tj ETQc	լ 1մ.Ջ .784	13314 rgBT /
326	Thermodynamic Modeling of CaSO ₄ –(NH ₄) ₂ SO ₄ –NH ₃ –H _{2Quaternary System with Asymmetric E-NRTL Model. Industrial & Engineering Chemistry Research, 2019, 58, 6811-6821.})>Q 1.8	2
327	Electrocatalysis: Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions (Adv. Mater. 6/2021). Advanced Materials, 2021, 33, 2170042.	11.1	2
328	A Facile Strategy to Boost the Active Sites of Fe–N–C Electrocatalyst for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2022, 169, 034506.	1.3	2
329	Half-cell electrode assessments of a crossover-tolerant direct methanol fuel cell with a platinum group metal-free cathode. Electrochimica Acta, 2022, 416, 140262.	2.6	2
330	Modeling Non-Precious Metal Catalyst Structures and Their Relationship to ORR. ECS Transactions, 2013, 58, 1869-1875.	0.3	1
331	Effects of Ink Formulation on the Structure and Performance of PGM-Free Catalyst Layer in PEMFCs. ECS Transactions, 2021, 104, 327-333.	0.3	1
332	Development of Stable Pt-Co Cathode Catalysts for PEM Fuel Cells. ECS Transactions, 2007, 11, 1259-1266.	0.3	0
333	Future Catalyst Approaches for Electrochemical Energy Storage and Conversion. Electrochemical Energy Storage and Conversion, 2015, , 55-75.	0.0	0
334	GO/rGO as Advanced Materials for Energy Storage and Conversion. , 2015, , 97-127.		0
335	Preface: Special topic on electrocatalysis & energy science. Science China Chemistry, 2020, 63, 1515-1516	4.2	0