Yihui Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/7605006/yihui-zhang-publications-by-citations.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

167 13,580 115 54 h-index g-index citations papers 181 11.6 6.45 15,877 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
167	Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. <i>Nature Communications</i> , 2013 , 4, 1543	17.4	978
166	Ultrathin conformal devices for precise and continuous thermal characterization of human kin. <i>Nature Materials</i> , 2013 , 12, 938-44	27	826
165	High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). <i>Nature Communications</i> , 2013 , 4, 1633	17.4	821
164	Soft microfluidic assemblies of sensors, circuits, and radios for the skin. <i>Science</i> , 2014 , 344, 70-4	33.3	802
163	Fractal design concepts for stretchable electronics. <i>Nature Communications</i> , 2014 , 5, 3266	17.4	625
162	Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. <i>Science</i> , 2015 , 347, 154-9	33.3	587
161	Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	372
160	A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11757-64	11.5	344
159	Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics. <i>Cell</i> , 2015 , 162, 662-74	56.2	326
158	Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. <i>Science</i> , 2019 , 363,	33.3	316
157	Soft network composite materials with deterministic and bio-inspired designs. <i>Nature Communications</i> , 2015 , 6, 6566	17.4	289
156	Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. <i>Nature Communications</i> , 2014 , 5, 4779	17.4	245
155	Self-assembled three dimensional network designs for soft electronics. <i>Nature Communications</i> , 2017 , 8, 15894	17.4	238
154	Experimental and Theoretical Studies of Serpentine Microstructures Bonded To Prestrained Elastomers for Stretchable Electronics. <i>Advanced Functional Materials</i> , 2014 , 24, 2028-2037	15.6	220
153	Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. <i>Nature Materials</i> , 2018 , 17, 268-276	27	216
152	Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. <i>Nature Electronics</i> , 2019 , 2, 26-35	28.4	209
151	Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. <i>Advanced Healthcare Materials</i> , 2014 , 3, 642-8	10.1	200

(2016-2013)

150	Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. <i>Soft Matter</i> , 2013 , 9, 8062-8070	3.6	192	
149	Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 199	91 10-5	190	
148	Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials. <i>Advanced Functional Materials</i> , 2016 , 26, 2629-2639	15.6	188	
147	Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. <i>Nature Communications</i> , 2014 , 5, 4938	17.4	185	
146	Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1597-607	10.1	175	
145	Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 12998-3003	11.5	159	
144	A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures. <i>Journal of the Mechanics and Physics of Solids</i> , 2016 , 90, 179-202	5	155	
143	Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. <i>Science Advances</i> , 2016 , 2, e1601014	14.3	152	
142	Mechanics of ultra-stretchable self-similar serpentine interconnects. <i>Acta Materialia</i> , 2013 , 61, 7816-78	28.4	147	
141	Mechanics of stretchable batteries and supercapacitors. <i>Current Opinion in Solid State and Materials Science</i> , 2015 , 19, 190-199	12	147	
140	Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. <i>Science Advances</i> , 2018 , 4, eaau5849	14.3	147	
139	Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. <i>Nature Biomedical Engineering</i> , 2019 , 3, 194-205	19	144	
138	Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. <i>Nature Communications</i> , 2018 , 9, 1417	17.4	136	
137	Assembly of Advanced Materials into 3D Functional Structures by Methods Inspired by Origami and Kirigami: A Review. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800284	4.6	129	
136	Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E9455-E9464	11.5	104	
135	Mechanically-Guided Structural Designs in Stretchable Inorganic Electronics. <i>Advanced Materials</i> , 2020 , 32, e1902254	24	104	
134	Design and application of TJ-shapedTstress-strain behavior in stretchable electronics: a review. <i>Lab on A Chip</i> , 2017 , 17, 1689-1704	7.2	99	
133	Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2016 , 83,	2.7	90	

132	A hierarchical computational model for stretchable interconnects with fractal-inspired designs. Journal of the Mechanics and Physics of Solids, 2014 , 72, 115-130	5	89
131	Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves. <i>Science Advances</i> , 2018 , 4, eaar8535	14.3	88
130	Materials and designs for wirelessly powered implantable light-emitting systems. Small, 2012, 8, 2812-8	311	88
129	Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature. <i>Advanced Healthcare Materials</i> , 2016 , 5, 119-27	10.1	83
128	Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping. <i>IEEE Transactions on Biomedical Engineering</i> , 2013 , 60, 2848-57	5	76
127	Multimodal Sensing with a Three-Dimensional Piezoresistive Structure. ACS Nano, 2019, 13, 10972-1097	79 6.7	75
126	Strain effect on ferroelectric behaviors of BaTiO3 nanowires: a molecular dynamics study. <i>Nanotechnology</i> , 2010 , 21, 015701	3.4	75
125	Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures. <i>ACS Nano</i> , 2015 , 9, 5968-75	16.7	73
124	Freestanding 3D Mesostructures, Functional Devices, and Shape-Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. <i>Advanced Materials</i> , 2019 , 31, e1805615	24	72
123	Soft network materials with isotropic negative Poisson's ratios over large strains. <i>Soft Matter</i> , 2018 , 14, 693-703	3.6	69
122	Laser-Induced Graphene for Electrothermally Controlled, Mechanically Guided, 3D Assembly and Human-Soft Actuators Interaction. <i>Advanced Materials</i> , 2020 , 32, e1908475	24	57
121	Soft three-dimensional network materials with rational bio-mimetic designs. <i>Nature Communications</i> , 2020 , 11, 1180	17.4	57
120	Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation. <i>Advanced Functional Materials</i> , 2016 , 26, 2909-2918	15.6	57
119	Mechanically active materials in three-dimensional mesostructures. Science Advances, 2018, 4, eaat8313	3 14.3	57
118	Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling: A short review of recent progress. <i>Extreme Mechanics Letters</i> , 2017 , 11, 96-104	3.9	56
117	A Generic Soft Encapsulation Strategy for Stretchable Electronics. <i>Advanced Functional Materials</i> , 2019 , 29, 1806630	15.6	55
116	A finite deformation model of planar serpentine interconnects for stretchable electronics. <i>International Journal of Solids and Structures</i> , 2016 , 91, 46-54	3.1	54
115	Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches. <i>Advanced Materials</i> , 2019 , 31, e1901895	24	54

(2018-2008)

114	Mechanical Properties of two novel planar lattice structures. <i>International Journal of Solids and Structures</i> , 2008 , 45, 3751-3768	3.1	54
113	Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs. <i>Advanced Functional Materials</i> , 2017 , 9, 1605476	15.6	51
112	Buckling and twisting of advanced materials into morphable 3D mesostructures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 13239-13248	11.5	51
111	Deformation and failure mechanisms of lattice cylindrical shells under axial loading. <i>International Journal of Mechanical Sciences</i> , 2009 , 51, 213-221	5.5	49
110	All-Elastomeric, Strain-Responsive Thermochromic Color Indicators. <i>Small</i> , 2014 , 10, 1266-1271	11	46
109	Buckling of a stiff thin film on a pre-strained bi-layer substrate. <i>International Journal of Solids and Structures</i> , 2014 , 51, 3113-3118	3.1	45
108	The equivalent medium of cellular substrate under large stretching, with applications to stretchable electronics. <i>Journal of the Mechanics and Physics of Solids</i> , 2018 , 120, 199-207	5	45
107	High Performance, Tunable Electrically Small Antennas through Mechanically Guided 3D Assembly. <i>Small</i> , 2019 , 15, e1804055	11	44
106	Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms. <i>National Science Review</i> , 2020 , 7, 342-354	10.8	43
105	Oxygen-vacancy-induced memory effect and large recoverable strain in a barium titanate single crystal. <i>Physical Review B</i> , 2010 , 82,	3.3	42
104	Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling. <i>Advanced Functional Materials</i> , 2017 , 27, 1604281	15.6	41
103	Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 153	168-15	3 1 9
102	Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling. <i>Extreme Mechanics Letters</i> , 2017 , 11, 105-110	3.9	40
101	Three-Dimensional Multiscale, Multistable, and Geometrically Diverse Microstructures with Tunable Vibrational Dynamics Assembled by Compressive Buckling. <i>Advanced Functional Materials</i> , 2017 , 27, 160	1 5964	39
100	A double perturbation method of postbuckling analysis in 2D curved beams for assembly of 3D ribbon-shaped structures. <i>Journal of the Mechanics and Physics of Solids</i> , 2018 , 111, 215-238	5	38
99	Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. <i>Science Advances</i> , 2021 , 7,	14.3	38
98	Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate. <i>Applied Physics Letters</i> , 2015 , 106, 091902	3.4	37
97	Mechanically Assembled, Three-Dimensional Hierarchical Structures of Cellular Graphene with Programmed Geometries and Outstanding Electromechanical Properties. <i>ACS Nano</i> , 2018 , 12, 12456-12	4 6 37	37

96	2D Mechanical Metamaterials with Widely Tunable Unusual Modes of Thermal Expansion. <i>Advanced Materials</i> , 2019 , 31, e1905405	24	35
95	Molecular dynamics investigations on the size-dependent ferroelectric behavior of BaTiO3 nanowires. <i>Nanotechnology</i> , 2009 , 20, 405703	3.4	35
94	Materials and Wireless Microfluidic Systems for Electronics Capable of Chemical Dissolution on Demand. <i>Advanced Functional Materials</i> , 2015 , 25, 1338-1343	15.6	34
93	Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy. <i>Science Advances</i> , 2020 , 6, eabb7417	14.3	33
92	Mechanics of unusual soft network materials with rotatable structural nodes. <i>Journal of the Mechanics and Physics of Solids</i> , 2021 , 146, 104210	5	30
91	Vibration of Mechanically-Assembled 3D Microstructures Formed by Compressive Buckling. <i>Journal of the Mechanics and Physics of Solids</i> , 2018 , 112, 187-208	5	30
90	A theoretical model of reversible adhesion in shape memory surface relief structures and its application in transfer printing. <i>Journal of the Mechanics and Physics of Solids</i> , 2015 , 77, 27-42	5	29
89	A Mechanics Model of Soft Network Materials With Periodic Lattices of Arbitrarily Shaped Filamentary Microstructures for Tunable Poisson's Ratios. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2018 , 85,	2.7	28
88	Three-dimensional electronic microfliers inspired by wind-dispersed seeds. <i>Nature</i> , 2021 , 597, 503-510	50.4	28
87	Remotely Triggered Assembly of 3D Mesostructures Through Shape-Memory Effects. <i>Advanced Materials</i> , 2019 , 31, e1905715	24	27
86	Differential quadrature analysis of the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite sides. <i>Advances in Engineering Software</i> , 2008 , 39, 497-504	3.6	26
85	Mechanically Guided Post-Assembly of 3D Electronic Systems. <i>Advanced Functional Materials</i> , 2018 , 28, 1803149	15.6	26
84	Mechanically-Guided Deterministic Assembly of 3D Mesostructures Assisted by Residual Stresses. Small, 2017 , 13, 1700151	11	25
83	Analysis of a concentric coplanar capacitor for epidermal hydration sensing. <i>Sensors and Actuators A: Physical</i> , 2013 , 203, 149-153	3.9	25
82	Patterning Curved Three-Dimensional Structures With Programmable Kirigami Designs. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2017 , 84,	2.7	24
81	Three-dimensional electronic scaffolds for monitoring and regulation of multifunctional hybrid tissues. <i>Extreme Mechanics Letters</i> , 2020 , 35, 100634	3.9	24
80	Flexoelectricity induced increase of critical thickness in epitaxial ferroelectric thin films. <i>Physica B: Condensed Matter</i> , 2012 , 407, 3377-3381	2.8	24
79	Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process. <i>ACS Nano</i> , 2018 , 12, 4164-4171	16.7	23

(2021-2014)

78	Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates. <i>Extreme Mechanics Letters</i> , 2014 , 1, 120-126	3.9	23	
77	Quantitative thermal imaging of single-walled carbon nanotube devices by scanning Joule expansion microscopy. <i>ACS Nano</i> , 2012 , 6, 10267-75	16.7	23	
76	Mechanics of bistable cross-shaped structures through loading-path controlled 3D assembly. Journal of the Mechanics and Physics of Solids, 2019 , 129, 261-277	5	22	•
75	Constitutive relations and failure criterion of planar lattice composites. <i>Composites Science and Technology</i> , 2008 , 68, 3299-3304	8.6	22	
74	Fabrication and Deformation of 3D Multilayered Kirigami Microstructures. <i>Small</i> , 2018 , 14, e1703852	11	21	
73	Mechanics of buckled serpentine structures formed via mechanics-guided, deterministic three-dimensional assembly. <i>Journal of the Mechanics and Physics of Solids</i> , 2019 , 125, 736-748	5	20	
72	Mechanics Design for Stretchable, High Areal Coverage GaAs Solar Module on an Ultrathin Substrate. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2014 , 81,	2.7	20	
71	Study on crack propagation in ferroelectric single crystal under electric loading. <i>Acta Materialia</i> , 2009 , 57, 1630-1638	8.4	20	
70	Assembly of Foldable 3D Microstructures Using Graphene Hinges. Advanced Materials, 2020, 32, e2001	30.31	19	
69	Inverse Design Strategies for 3D Surfaces Formed by Mechanically Guided Assembly. <i>Advanced Materials</i> , 2020 , 32, e1908424	24	19	
68	A theoretical model of postbuckling in straight ribbons with engineered thickness distributions for three-dimensional assembly. <i>International Journal of Solids and Structures</i> , 2018 , 147, 254-271	3.1	19	
67	Fracture analysis of ferroelectric single crystals: Domain switching near crack tip and electric field induced crack propagation. <i>Journal of the Mechanics and Physics of Solids</i> , 2013 , 61, 114-130	5	19	
66	Size dependent domain configuration and electric field driven evolution in ultrathin ferroelectric films: A phase field investigation. <i>Journal of Applied Physics</i> , 2010 , 107, 034107	2.5	18	
65	Electric-field-induced fatigue crack growth in ferroelectric ceramics. <i>Theoretical and Applied Fracture Mechanics</i> , 2010 , 54, 98-104	3.7	18	
64	Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic operation and amplitude modulation. <i>Science Advances</i> , 2021 , 7,	14.3	18	
63	A nonlinear mechanics model of soft network metamaterials with unusual swelling behavior and tunable phononic band gaps. <i>Composites Science and Technology</i> , 2019 , 183, 107822	8.6	17	
62	Design and Fabrication of Heterogeneous, Deformable Substrates for the Mechanically Guided 3D Assembly. <i>ACS Applied Materials & Acs Acc Applied Materials & Acs Acc Acc Acc Acc Acc Acc Acc Acc Acc</i>	9.5	17	
61	Designing Mechanical Metamaterials with Kirigami-Inspired, Hierarchical Constructions for Giant Positive and Negative Thermal Expansion. <i>Advanced Materials</i> , 2021 , 33, e2004919	24	17	

60	Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile buckling. <i>Npj Flexible Electronics</i> , 2018 , 2,	10.7	17
59	Soft Three-Dimensional Microscale Vibratory Platforms for Characterization of Nano-Thin Polymer Films. <i>ACS Nano</i> , 2019 , 13, 449-457	16.7	16
58	Manufacturing of 3D multifunctional microelectronic devices: challenges and opportunities. <i>NPG Asia Materials</i> , 2019 , 11,	10.3	15
57	Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials <i>Science Advances</i> , 2022 , 8, eabm3785	14.3	15
56	Viscoelastic Characteristics of Mechanically Assembled Three-Dimensional Structures Formed by Compressive Buckling. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2018 , 85,	2.7	14
55	Liquid Crystal Elastomer Metamaterials with Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration. <i>Advanced Materials</i> , 2021 , 33, e2106175	24	14
54	Optimization-Based Approach for the Inverse Design of Ribbon-Shaped Three-Dimensional Structures Assembled Through Compressive Buckling. <i>Physical Review Applied</i> , 2019 , 11,	4.3	13
53	Analyses of mechanically-assembled 3D spiral mesostructures with applications as tunable inductors. <i>Science China Technological Sciences</i> , 2019 , 62, 243-251	3.5	13
52	A Computational Model of Bio-Inspired Soft Network Materials for Analyzing Their Anisotropic Mechanical Properties. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2018 , 85,	2.7	13
51	Transformable, Freestanding 3D Mesostructures Based on Transient Materials and Mechanical Interlocking. <i>Advanced Functional Materials</i> , 2019 , 29, 1903181	15.6	13
50	An electromechanical atomic-scale finite element method for simulating evolutions of ferroelectric nanodomains. <i>Journal of the Mechanics and Physics of Solids</i> , 2012 , 60, 1383-1399	5	13
49	Stretchable, Breathable and Stable Lead-free Perovskite/Polymer Nanofiber Composite for Hybrid Triboelectric and Piezoelectric Energy Harvesting <i>Advanced Materials</i> , 2022 , e2200042	24	13
48	OPTIMAL DESIGN OF SANDWICH BEAMS WITH LIGHTWEIGHT CORES IN THREE-POINT BENDING. International Journal of Applied Mechanics, 2012 , 04, 1250033	2.4	12
47	Advances in Developing Electromechanically Coupled Computational Methods for Piezoelectrics/Ferroelectrics at Multiscale. <i>Applied Mechanics Reviews</i> , 2013 , 65,	8.6	11
46	Stress-induced phase transition and deformation behavior of BaTiO3 nanowires. <i>Journal of Applied Physics</i> , 2011 , 110, 054109	2.5	11
45	Design, fabrication and applications of soft network materials. <i>Materials Today</i> , 2021 ,	21.8	11
44	Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates. <i>Microsystems and Nanoengineering</i> , 2019 , 5, 54	7.7	11
43	Toward Imperfection-Insensitive Soft Network Materials for Applications in Stretchable Electronics. <i>ACS Applied Materials & Description of the ACS Applie</i>	9.5	10

(2016-2021)

42	Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	10
41	Reprogrammable 3D Mesostructures Through Compressive Buckling of Thin Films with Prestrained Shape Memory Polymer. <i>Acta Mechanica Solida Sinica</i> , 2018 , 31, 589-598	2	9
40	An Inverse Design Method of Buckling-Guided Assembly for Ribbon-Type 3D Structures. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2020 , 87,	2.7	9
39	An Anti-Fatigue Design Strategy for 3D Ribbon-Shaped Flexible Electronics. <i>Advanced Materials</i> , 2021 , 33, e2102684	24	9
38	External uniform electric field removing the flexoelectric effect in epitaxial ferroelectric thin films. <i>Europhysics Letters</i> , 2012 , 99, 47003	1.6	8
37	Stress concentration in two-dimensional lattices with imperfections. <i>Acta Mechanica</i> , 2011 , 216, 105-12	22 2.1	8
36	A surface-layer model of ferroelectric nanowire. <i>Journal of Applied Physics</i> , 2010 , 108, 124109	2.5	8
35	A COD fracture model of ferroelectric ceramics with applications in electric field induced fatigue crack growth. <i>International Journal of Fracture</i> , 2011 , 167, 211-220	2.3	7
34	Design and Assembly of Reconfigurable 3D Radio-Frequency Antennas Based on Mechanically Triggered Switches. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900256	6.4	6
33	Plastic yield and collapse mechanism of planar lattice structures. <i>Journal of Mechanics of Materials and Structures</i> , 2008 , 3, 1257-1277	1.2	6
32	Bioinspired design and assembly of a multilayer cage-shaped sensor capable of multistage load bearing and collapse prevention. <i>Nanotechnology</i> , 2021 , 32, 155506	3.4	6
31	An analytic model of two-level compressive buckling with applications in the assembly of free-standing 3D mesostructures. <i>Soft Matter</i> , 2018 , 14, 8828-8837	3.6	6
30	Recent progress of morphable 3D mesostructures in advanced materials. <i>Journal of Semiconductors</i> , 2020 , 41, 041604	2.3	5
29	Bioinspired elastomer composites with programmed mechanical and electrical anisotropies <i>Nature Communications</i> , 2022 , 13, 524	17.4	5
28	Nonlinear compressive deformations of buckled 3D ribbon mesostructures. <i>Extreme Mechanics Letters</i> , 2021 , 42, 101114	3.9	5
27	Torsional deformation dominated buckling of serpentine structures to form three-dimensional architectures with ultra-low rigidity. <i>Journal of the Mechanics and Physics of Solids</i> , 2021 , 155, 104568	5	5
26	Three-dimensional thermal analysis of wirelessly powered light-emitting systems. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2012 , 468, 4088-4097	2.4	4
25	Flexible Electronics: Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature (Adv. Healthcare Mater. 1/2016). <i>Advanced Healthcare Materials</i> , 2016 , 5, 2	10.1	4

24	Postbuckling analyses of frame mesostructures consisting of straight ribbons for mechanically guided three-dimensional assembly. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2019 , 475, 20190012	2.4	3
23	Programmable Stimulation and Actuation in Flexible and Stretchable Electronics. <i>Advanced Intelligent Systems</i> , 2021 , 3, 2000228	6	3
22	3D-Printing Damage-Tolerant Architected Metallic Materials with Shape Recoverability via Special Deformation Design of Constituent Material. <i>ACS Applied Materials & Design Section</i> , 13, 39915-39	9924	3
21	Analyses of postbuckling in stretchable arrays of nanostructures for wide-band tunable plasmonics. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2015 , 471, 20150632	2 ^{2.4}	2
20	Flexible Electronics: Materials and Designs for Wirelessly Powered Implantable Light-Emitting Systems (Small 18/2012). <i>Small</i> , 2012 , 8, 2770-2770	11	2
19	Thermomechanical Modeling of Scanning Joule Expansion Microscopy Imaging of Single-Walled Carbon Nanotube Devices. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2013 , 80,	2.7	2
18	Critical Thickness and the Size-Dependent Curie Temperature of BaTiO3 Nanofilms. <i>Journal of Computational and Theoretical Nanoscience</i> , 2011 , 8, 867-872	0.3	2
17	Effects of high order deformations on the strength of planar lattice materials. <i>Acta Mechanica Sinica/Lixue Xuebao</i> , 2008 , 24, 533-540	2	2
16	Mechanics and Designs of Stretchable Bioelectronics. <i>Microsystems and Nanosystems</i> , 2016 , 53-68	0.4	2
15	3D Assembly: Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches (Adv. Mater. 36/2019). <i>Advanced Materials</i> , 2019 , 31, 1970254	24	1
14	Mechanically Guided Hierarchical Assembly of 3D Mesostructures Advanced Materials, 2022, e2109416	24	1
13	Inverse design strategies for buckling-guided assembly of 3D surfaces based on topology optimization. <i>Extreme Mechanics Letters</i> , 2022 , 51, 101582	3.9	1
12	Tunable seesaw-like 3D capacitive sensor for force and acceleration sensing. <i>Npj Flexible Electronics</i> , 2021 , 5,	10.7	1
11	Electronic Stuctures: Mechanically Guided Post-Assembly of 3D Electronic Systems (Adv. Funct. Mater. 48/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870344	15.6	1
10	Island Effect in Stretchable Inorganic Electronics Small, 2022, e2107879	11	1
9	Morphable three-dimensional electronic mesofliers capable of on-demand unfolding. <i>Science China Materials</i> ,1	7.1	1
8	Recent progress in three-dimensional flexible physical sensors. <i>International Journal of Smart and Nano Materials</i> ,1-25	3.6	1
7	A phenomenological framework for modeling of nonlinear mechanical responses in soft network materials with arbitrarily curved microstructures. <i>Extreme Mechanics Letters</i> , 2022 , 101795	3.9	1

LIST OF PUBLICATIONS

6	Liquid Crystal Elastomer Metamaterials with Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration (Adv. Mater. 45/2021). <i>Advanced Materials</i> , 2021 , 33, 2170356	24	O
5	Imperfection sensitivity of mechanical properties in soft network materials with horseshoe microstructures. <i>Acta Mechanica Sinica/Lixue Xuebao</i> ,1	2	0
4	Mechanics of three-dimensional soft network materials with a class of bio-inspired designs. <i>Journal of Applied Mechanics, Transactions ASME</i> ,1-45	2.7	0
3	Inverse Design Methods: Inverse Design Strategies for 3D Surfaces Formed by Mechanically Guided Assembly (Adv. Mater. 14/2020). <i>Advanced Materials</i> , 2020 , 32, 2070107	24	
2	3D Assembly: Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials (Adv. Funct. Mater. 16/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 2586-2586	15.6	
1	4D Electronic Systems: Transformable, Freestanding 3D Mesostructures Based on Transient Materials and Mechanical Interlocking (Adv. Funct. Mater. 40/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970277	15.6	