
Jonathan Livny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/760467/publications.pdf Version: 2024-02-01

ΙΟΝΑΤΗΛΝΙΙΙΝΝΥ

#	Article	IF	CITATIONS
1	Multiplexed detection of bacterial nucleic acids using Cas13 in droplet microarrays. , 2022, 1, pgac021.		15
2	Best practices on the differential expression analysis of multi-species RNA-seq. Genome Biology, 2021, 22, 121.	3.8	51
3	<scp>SARSâ€CoV</scp> â€2 antibody persistence in <scp>COVID</scp> â€19 convalescent plasma donors: Dependency on assay format and applicability to serosurveillance. Transfusion, 2021, 61, 2677-2687.	0.8	46
4	Wisdom of the crowds: A suggested polygenic plan for small-RNA-mediated regulation in bacteria. IScience, 2021, 24, 103096.	1.9	7
5	The cvn8 Conservon System Is a Clobal Regulator of Specialized Metabolism in Streptomyces coelicolor during Interspecies Interactions. MSystems, 2021, 6, e0028121.	1.7	1
6	Analysis of a phase-variable restriction modification system of the human gut symbiont Bacteroides fragilis. Nucleic Acids Research, 2020, 48, 11040-11053.	6.5	10
7	Spatiotemporal Organization of the E.Âcoli Transcriptome: Translation Independence and Engagement in Regulation. Molecular Cell, 2019, 76, 574-589.e7.	4.5	60
8	Chemical disarming of isoniazid resistance in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10510-10517.	3.3	48
9	Rapid identification and phylogenetic classification of diverse bacterial pathogens in a multiplexed hybridization assay targeting ribosomal RNA. Scientific Reports, 2019, 9, 4516.	1.6	11
10	Hybridization-based capture of pathogen mRNA enables paired host-pathogen transcriptional analysis. Scientific Reports, 2019, 9, 19244.	1.6	27
11	Simultaneous detection of genotype and phenotype enables rapid and accurate antibiotic susceptibility determination. Nature Medicine, 2019, 25, 1858-1864.	15.2	85
12	Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356, 438-442.	6.0	2,275
13	Bacterial virulence phenotypes of <i>Escherichia coli</i> and host susceptibility determine risk for urinary tract infections. Science Translational Medicine, 2017, 9, .	5.8	139
14	Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science, 2017, 357, 1156-1160.	6.0	1,059
15	A mucosal imprint left by prior Escherichia coli bladder infection sensitizes to recurrent disease. Nature Microbiology, 2017, 2, 16196.	5.9	67
16	A putative Vibrio cholerae two-component system controls a conserved periplasmic protein in response to the antimicrobial peptide polymyxin B. PLoS ONE, 2017, 12, e0186199.	1.1	26
17	Simultaneous generation of many RNA-seq libraries in a single reaction. Nature Methods, 2015, 12, 323-325.	9.0	256
18	TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Research, 2014, 42, W124-W129.	6.5	177

JONATHAN LIVNY

#	Article	IF	CITATIONS
19	Pilicide ec240 Disrupts Virulence Circuits in Uropathogenic Escherichia coli. MBio, 2014, 5, e02038.	1.8	65
20	High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model–based analyses of transposon-insertion sequencing data. Nucleic Acids Research, 2013, 41, 9033-9048.	6.5	115
21	RNA-Seq-Based Monitoring of Infection-Linked Changes in Vibrio cholerae Gene Expression. Cell Host and Microbe, 2011, 10, 165-174.	5.1	191
22	NanoRNAs Prime Transcription Initiation InÂVivo. Molecular Cell, 2011, 42, 817-825.	4.5	107
23	<i>Legionella pneumophila</i> 6S RNA optimizes intracellular multiplication. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7533-7538.	3.3	84
24	Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis. Nucleic Acids Research, 2010, 38, 4067-4078.	6.5	108
25	Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Research, 2009, 37, e46-e46.	6.5	148
26	High-Throughput, Kingdom-Wide Prediction and Annotation of Bacterial Non-Coding RNAs. PLoS ONE, 2008, 3, e3197.	1.1	192
27	Distribution of Centromere-Like <i>parS</i> Sites in Bacteria: Insights from Comparative Genomics. Journal of Bacteriology, 2007, 189, 8693-8703.	1.0	231
28	Identification of small RNAs in diverse bacterial species. Current Opinion in Microbiology, 2007, 10, 96-101.	2.3	173
29	Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Research, 2006, 34, 3484-3493.	6.5	175
30	sRNAPredict: an integrative computational approach to identify sRNAs in bacterial genomes. Nucleic Acids Research, 2005, 33, 4096-4105.	6.5	100
31	Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. Molecular Microbiology, 2004, 51, 1691-1704.	1.2	118
32	Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Molecular Microbiology, 2002, 44, 957-970.	1.2	212