Gordon W Selling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7604069/publications.pdf

Version: 2024-02-01

64 papers

1,654 citations

304701 22 h-index 315719 38 g-index

64 all docs 64
docs citations

64 times ranked 1556 citing authors

#	Article	IF	CITATIONS
1	Structural Characterization of α-Zein. Journal of Agricultural and Food Chemistry, 2006, 54, 543-547.	5.2	171
2	Effect of Solvent and Temperature on Secondary and Tertiary Structure of Zein by Circular Dichroism. Cereal Chemistry, 2007, 84, 265-270.	2.2	95
3	Rapid and environmentally friendly preparation of starch esters. Carbohydrate Polymers, 2008, 74, 137-141.	10.2	87
4	Impact of Solvent on Electrospinning of Zein and Analysis of Resulting Fibers. Macromolecular Chemistry and Physics, 2007, 208, 1002-1010.	2.2	84
5	Displacements at the nitrogen of lithioalkoxylamides by organometallic reagents. Journal of Organic Chemistry, 1989, 54, 5574-5580.	3.2	70
6	Extraction, composition, and functional properties of dried alfalfa (<i>Medicago sativa</i> L.) leaf protein. Journal of the Science of Food and Agriculture, 2017, 97, 882-888.	3.5	66
7	Electrospun Zein Fibers Using Glutaraldehyde as the Crosslinking Reagent: Effect of Time and Temperature. Macromolecular Chemistry and Physics, 2008, 209, 1003-1011.	2.2	61
8	The effect of extrusion processing on Zein. Polymer Degradation and Stability, 2010, 95, 2241-2249.	5.8	44
9	Role of non-covalent interactions in the production of visco-elastic material from zein. Food Chemistry, 2014, 147, 230-238.	8.2	44
10	Properties of films from corn zein reacted with glutaraldehyde. Journal of Applied Polymer Science, 2007, 105, 2877-2883.	2.6	43
11	Conversion of agricultural residues to carboxymethylcellulose and carboxymethylcellulose acetate. Industrial Crops and Products, 2014, 60, 259-265.	5.2	40
12	Improved hydroxypropyl methylcellulose (HPMC) films through incorporation of amylose-sodium palmitate inclusion complexes. Carbohydrate Polymers, 2018, 188, 76-84.	10.2	40
13	Physical and mechanical properties of extruded poly(lactic acid)-based Paulownia elongata biocomposites. Industrial Crops and Products, 2013, 44, 88-96.	5. 2	39
14	lodine catalyzed esterification of cellulose using reduced levels of solvent. Carbohydrate Polymers, 2007, 68, 555-560.	10.2	36
15	Effect of water and tri(ethylene) glycol on the rheological properties of zein. Polymer, 2004, 45, 4249-4255.	3.8	32
16	Effects of cold-pressing and seed cooking on functional properties of protein in pennycress (Thlaspi) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf !
17	Surface modification of zein films. Industrial Crops and Products, 2009, 30, 168-171.	5. 2	30
18	Extraction of proteins from pennycress seeds and press cake. Industrial Crops and Products, 2013, 41, 113-119.	5.2	30

#	Article	IF	Citations
19	Corn zein undergoes conformational changes to higher \hat{l}^2 -sheet content during its self-assembly in an increasingly hydrophilic solvent. International Journal of Biological Macromolecules, 2020, 157, 232-239.	7.5	30
20	Preparation, composition and functional properties of pennycress (Thlaspi arvense L.) seed protein isolates. Industrial Crops and Products, 2014, 55, 173-179.	5.2	27
21	Rheological Studies Utilizing Various Lots of Zein in N,N-Dimethylformamide Solutions. Journal of Agricultural and Food Chemistry, 2005, 53, 9050-9055.	5.2	25
22	Effect of Salt and Ethanol Addition on Zein–Starch Dough and Bread Quality. Journal of Food Science, 2017, 82, 613-621.	3.1	25
23	Zein-based polymers formed by modifications with isocyanates. Industrial Crops and Products, 2013, 43, 106-113.	5.2	24
24	Effect of zein extrusion and starch type on the rheological behavior of gluten-free dough. Journal of Cereal Science, 2020, 91, 102866.	3.7	24
25	Viscosity control of zein processing with sodium dodecyl sulfate. Industrial Crops and Products, 2006, 23, 15-22.	5.2	23
26	Thermal treatment of dry zein to improve rheological properties in gluten-free dough. Food Hydrocolloids, 2021, 115, 106629.	10.7	23
27	Electrospun zein fibers using glyoxal as the crosslinking reagent. Journal of Applied Polymer Science, 2012, 123, 2651-2661.	2.6	22
28	Multivalent carboxylic acids to modify the properties of zein. Industrial Crops and Products, 2007, 25, 63-69.	5.2	20
29	Compatible Blends of Zein and Polyvinylpyrrolidone. Journal of Polymers and the Environment, 2009, 17, 115-122.	5.0	20
30	Extraction, Composition and Functional Properties of Pennycress (<i>Thlaspi arvense</i> L.) Press Cake Protein. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 905-914.	1.9	20
31	Rheological characterization of solutions and thin films made from amylose-hexadecylammonium chloride inclusion complexes and polyvinyl alcohol. Carbohydrate Polymers, 2017, 161, 140-148.	10.2	20
32	Reactive extrusion of zein with glyoxal. Journal of Applied Polymer Science, 2009, 113, 1828-1835.	2.6	19
33	Leptospermum scoparium essential oil is a promising source of mosquito larvicide and its toxicity is enhanced by a biobased emulsifier. PLoS ONE, 2020, 15, e0229076.	2.5	19
34	Improved Isolation of Zein from Corn Gluten Meal Using Acetic Acid and Isolate Characterization as Solvent. Cereal Chemistry, 2008, 85, 202-206.	2.2	18
35	Effect of multiple extrusion passes on zein. Polymer Degradation and Stability, 2013, 98, 184-189.	5.8	18
36	Melt reaction of zein with glyoxal to improve tensile strength and reduce solubility. Journal of Applied Polymer Science, 2008, 109, 2375-2383.	2.6	16

3

#	Article	IF	Citations
37	Increased water resistance of paper treated with amylose-fatty ammonium salt inclusion complexes. Industrial Crops and Products, 2017, 105, 231-237.	5.2	15
38	Incorporation of Plasticizers and Co-proteins in Zein Electrospun Fibers. Journal of Agricultural and Food Chemistry, 2020, 68, 14610-14619.	5.2	15
39	Effect of spray drying on the properties of amylose-hexadecylammonium chloride inclusion complexes. Carbohydrate Polymers, 2017, 157, 1050-1056.	10.2	14
40	Emulsification properties of amylose-fatty sodium salt inclusion complexes. Food Hydrocolloids, 2019, 90, 490-499.	10.7	14
41	Improved Tensile Strength of Zein Films Using Glyoxal as a Crosslinking Reagent. Journal of Biobased Materials and Bioenergy, 2007, 1, 282-288.	0.3	14
42	Sample preparation and testing methods affect the physical properties and evaluation of plasticized zein. Industrial Crops and Products, 2007, 25, 266-273.	5.2	13
43	Electrospinning formaldehydeâ€crosslinked zein solutions. Polymer International, 2011, 60, 537-542.	3.1	13
44	Extruded foams prepared from high amylose starch with sodium stearate to form amylose inclusion complexes*. Journal of Applied Polymer Science, 2016, 133, .	2.6	10
45	Films prepared from poly(vinyl alcohol) and amylose-fatty acid salt inclusion complexes with increased surface hydrophobicity and high elongation. Starch/Staerke, 2016, 68, 874-884.	2.1	9
46	Poly(vinyl alcohol) composite films with high percent elongation prepared from amyloseâ€fatty ammonium salt inclusion complexes. Journal of Applied Polymer Science, 2016, 133, .	2.6	9
47	Insecticidal Activity of Commiphora erythraea Essential Oil and Its Emulsions Against Larvae of Three Mosquito Species. Journal of Medical Entomology, 2020, 57, 1835-1842.	1.8	9
48	Reaction of Zein with Methylenediphenyl Diisocyanate in the Melt State: Thermal, Mechanical, and Physical Properties. Industrial & Engineering Chemistry Research, 2012, 51, 9199-9203.	3.7	8
49	Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose–palmitic acid inclusion complexes. Carbohydrate Polymers, 2015, 121, 420-427.	10.2	7
50	Physical, Rheological, Functional, and Film Properties of a Novel Emulsifier: Frost Grape Polysaccharide from <i>Vitis riparia Michx</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 8754-8762.	5.2	7
51	Amylose Inclusion Complexes as Emulsifiers for Garlic and Asafoetida Essential Oils for Mosquito Control. Insects, 2019, 10, 337.	2.2	7
52	Antifungal Activity of a Fatty Ammonium Chloride Amylose Inclusion Complex against Fusarium sambucinum; Control of Dry Rot on Multiple Potato Varieties American Journal of Potato Research, 2019, 96, 79-85.	0.9	7
53	Antimicrobial properties of amylose-fatty ammonium salt inclusion complexes. Carbohydrate Polymers, 2020, 230, 115666.	10.2	7
54	Blends of Zein and Nylon-6. Journal of Polymers and the Environment, 2012, 20, 631-637.	5.0	6

#	Article	IF	CITATIONS
55	Impact of Thiocyanate Salts on Physical, Thermal, and Rheological Properties of Zein Films. Cereal Chemistry, 2013, 90, 204-210.	2.2	5
56	Improved zein films using polyethylenemaleic anhydride. Journal of Applied Polymer Science, 2014, 131, .	2.6	5
57	Impact of Solvent Selection on Graft Co-polymerization of Acrylamide Onto Starch. Journal of Polymers and the Environment, 2015, 23, 294-301.	5.0	5
58	Polymer composites prepared from heat-treated starch and styrene–butadiene latex. Journal of Elastomers and Plastics, 2016, 48, 80-93.	1.5	5
59	Preparation and Properties of Solution Cast Films From Pennycress Protein Isolate. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1091-1103.	1.9	5
60	Preparation and properties of solution cast films from pilot-scale cottonseed protein isolate. Industrial Crops and Products, 2022, 178, 114615.	5.2	4
61	Use of novel film forming starch complexes to directly and indirectly reduce insect damage to plants. Crop Protection, 2020, 130, 105048.	2.1	2
62	Rheological Studies on the Reaction of Zein with Polyethylenemaleic Anhydride. Cereal Chemistry, 2016, 93, 145-149.	2.2	1
63	Effects of loblolly pine extract, primary and quaternary alkyl ammonium chlorides combined with burgundy oil from eastern red cedar against subterranean termites and wood-decay fungi. BioResources, 2020, 16, 893-910.	1.0	1

Structure-Function Properties of Amylose-Oleic Acid Inclusion Complexes Grafted with Poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5