kiachehr Behfarnia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7603454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shear strength of reinforced concrete deep beams containing recycled concrete aggregate and recycled asphalt pavement. Construction and Building Materials, 2022, 314, 125597.	3.2	14
2	Numerical investigation of RC deep beams containing recycled aggregates. Construction and Building Materials, 2022, 324, 126713.	3.2	4
3	Improving the Flexural Behavior of Eco-Friendly Strain Hardening Cementitious Composites Made of PP and Unoiled PVA. Arabian Journal for Science and Engineering, 2022, 47, 13199-13227.	1.7	1
4	Drying shrinkage of one-part alkali-activated slag concrete. Journal of Building Engineering, 2022, 51, 104263.	1.6	22
5	Effects of the combined usage of micro and nano-silica on the drying shrinkage and compressive strength of the self-compacting concrete. Journal of Sustainable Cement-Based Materials, 2021, 10, 92-110.	1.7	20
6	Water penetration resistance of the self-compacting concrete by the combined addition of micro and nano-silica. Asian Journal of Civil Engineering, 2021, 22, 1-12.	0.8	10
7	Evaluation of mechanical and durability properties of engineered cementitious composites exposed to sulfate attack and freeze–thaw cycle. Asian Journal of Civil Engineering, 2021, 22, 417-429.	0.8	6
8	Investigation on the Mechanical Properties and Microstructure of Eco-friendly Mortar Containing WGP at Elevated Temperature. International Journal of Concrete Structures and Materials, 2021, 15, .	1.4	14
9	Effect of Micro-Silica Addition into Electric Arc Furnace Steel Slag Eco-Efficient Concrete. Applied Sciences (Switzerland), 2021, 11, 4893.	1.3	8
10	Mix Design Effects on the Durability of Alkali-Activated Slag Concrete in a Hydrochloric Acid Environment. Sustainability, 2021, 13, 8096.	1.6	10
11	Evaluation of the effects of nanomaterials on durability of engineered cementitious composites exposed to the aggressive environment. Journal of Composite Materials, 2020, 54, 1807-1817.	1.2	6
12	Void characteristics and mechanical strength of cementitious mortars containing multi-walled carbon nanotubes. Journal of Composite Materials, 2020, 54, 2283-2295.	1.2	3
13	An Experimental Study of Beam-Column Joints with Closely Spaced Headed Bars and Self-Consolidating Concrete. KSCE Journal of Civil Engineering, 2020, 24, 2458-2476.	0.9	1
14	Performance of reinforced self-consolidating concrete beam-column joints with headed bars subjected to pseudo-static cyclic loading. Ain Shams Engineering Journal, 2020, 11, 751-765.	3.5	3
15	Application of alkali-activated slag in roller compacted concrete. International Journal of Pavement Research and Technology, 2020, 13, 324-333.	1.3	7
16	Influence of recycled concrete aggregates on alkali-activated slag mortar exposed to elevated temperatures. Journal of Building Engineering, 2019, 26, 100871.	1.6	27
17	The effect of the blaine fineness on the mechanical properties of the alkali-activated slag cement. Journal of Building Engineering, 2019, 26, 100897.	1.6	13
18	The effect of curing period on the residual strength of Portland cement mortar containing MWCNTs at elevated temperature. Construction and Building Materials, 2019, 196, 144-153.	3.2	16

KIACHEHR BEHFARNIA

#	Article	IF	CITATIONS
19	The Effect of Alkaline Solution-to-Slag Ratio on Permeability of Alkali Activated Slag Concrete. International Journal of Civil Engineering, 2018, 16, 897-904.	0.9	8
20	Treatment of urban storm water using adsorbent porous concrete. Water Management, 2018, 171, 328-334.	0.4	14
21	Mechanical properties of Portland cement mortar containing multi-walled carbon nanotubes at elevated temperatures. Construction and Building Materials, 2018, 176, 482-489.	3.2	79
22	The Effect of Alkali Concentration and Sodium Silicate Modulus on the Properties of Alkali-Activated Slag Concrete. Journal of Advanced Concrete Technology, 2018, 16, 293-305.	0.8	62
23	The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete. Construction and Building Materials, 2018, 176, 172-178.	3.2	116
24	The effect of elevated temperature on the residual tensile strength and physical properties of the alkali-activated slag concrete. Journal of Building Engineering, 2018, 20, 442-454.	1.6	49
25	An assessment on parameters affecting the carbonation of alkali-activated slag concrete. Journal of Cleaner Production, 2017, 157, 1-9.	4.6	82
26	The effect of silica fume on durability of alkali activated slag concrete. Construction and Building Materials, 2017, 134, 262-268.	3.2	174
27	Mechanical Properties and Durability of Fiber Reinforced Alkali Activated Slag Concrete. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	41
28	Effects of micro and nanoparticles of SiO 2 on the permeability of alkali activated slag concrete. Construction and Building Materials, 2017, 131, 205-213.	3.2	115
29	A numerical study on behavior of CFRP strengthened shear wall with opening. Computers and Concrete, 2017, 19, 179-189.	0.7	7
30	The new proposed details for moment resisting connections of steel beam to continuous concrete column. Advances in Structural Engineering, 2016, 19, 156-169.	1.2	7
31	Reduction of Urban Storm-Runoff Pollution Using Porous Concrete Containing Iron Slag Adsorbent. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	23
32	Application of alkali-activated slag concrete in railway sleepers. Materials & Design, 2015, 69, 89-95.	5.1	79
33	Abrasion resistance of alkali-activated slag concrete designed by Taguchi method. Construction and Building Materials, 2015, 98, 792-798.	3.2	67
34	Application of high performance polypropylene fibers in concrete lining of water tunnels. Materials & Design, 2014, 55, 274-279.	5.1	147
35	The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Construction and Building Materials, 2013, 48, 580-584.	3.2	191
36	Effect of nano-particles on durability of fiber-reinforced concrete pavement. Construction and Building Materials, 2013, 48, 934-941.	3.2	109

#	Article	IF	CITATIONS
37	The effects of pozzolanic binders and polypropylene fibers on durability of SCC to magnesium sulfate attack. Construction and Building Materials, 2013, 38, 64-71.	3.2	59