
Andrey G Lyalin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/760326/publications.pdf Version: 2024-02-01

ANDREV CLVALIN

#	Article	IF	CITATIONS
1	Catalytic Oxidative Dehydrogenation of Light Alkanes over Oxygen Functionalized Hexagonal Boron Nitride. ChemistrySelect, 2022, 7, .	0.7	1
2	Boron nitride for enhanced oxidative dehydrogenation of ethylbenzene. Journal of Energy Chemistry, 2021, 57, 477-484.	7.1	23
3	Electronic structure of the [Ni(Salen)] complex studied by core-level spectroscopies. Physical Chemistry Chemical Physics, 2021, 23, 11015-11027.	1.3	7
4	Heterocyclic Ringâ€Opening of Nanographene on Au(111). Angewandte Chemie, 2021, 133, 9513-9518.	1.6	2
5	Heterocyclic Ringâ€Opening of Nanographene on Au(111). Angewandte Chemie - International Edition, 2021, 60, 9427-9432.	7.2	15
6	Honeycomb Boron on Al(111): From the Concept of Borophene to the Two-Dimensional Boride. ACS Nano, 2021, 15, 15153-15165.	7.3	20
7	Catalytic Functionalization of Hexagonal Boron Nitride for Oxidation and Epoxidation Reactions by Molecular Oxygen. Journal of Physical Chemistry C, 2021, 125, 19219-19228.	1.5	2
8	Catalytic Activity of Gold Clusters Supported on the h-BN/Au(111) Surface for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2021, 125, 1334-1344.	1.5	17
9	Structural Characterization of Nickel-Doped Aluminum Oxide Cations by Cryogenic Ion Trap Vibrational Spectroscopy. Journal of Physical Chemistry A, 2021, 125, 9527-9535.	1.1	4
10	Observations and theories of quantum effects in proton transfer electrode processes. Current Opinion in Electrochemistry, 2020, 19, 96-105.	2.5	16
11	Soft X-ray Li-K and Si-L2, 3 Emission from Crystalline and Amorphous Lithium Silicides in Lithium-Ion Batteries Anode. Journal of the Electrochemical Society, 2019, 166, A5362-A5368.	1.3	3
12	Single-Phase Borophene on Ir(111): Formation, Structure, and Decoupling from the Support. ACS Nano, 2019, 13, 14511-14518.	7.3	99
13	Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu ₁₃ . Journal of Physical Chemistry A, 2019, 123, 210-217.	1.1	18
14	CO ₂ Adsorption on Ti ₃ O ₆ [–] : A Novel Carbonate Binding Motif. Journal of Physical Chemistry C, 2019, 123, 8439-8446.	1.5	19
15	Lithiation Products of a Silicon Anode Based on Soft X-ray Emission Spectroscopy: A Theoretical Study. Journal of Physical Chemistry C, 2018, 122, 11096-11108.	1.5	8
16	Oxygen Reduction Reaction Catalyzed by Small Gold Cluster on h-BN/Au(111) Support. Electrocatalysis, 2018, 9, 182-188.	1.5	14
17	Quantum-to-Classical Transition of Proton Transfer in Potential-Induced Dioxygen Reduction. Physical Review Letters, 2018, 121, 236001.	2.9	38
18	Microscopic Electrode Processes in the Four-Electron Oxygen Reduction on Highly Active Carbon-Based Electrocatalysts. ACS Catalysis, 2018, 8, 8162-8176.	5.5	54

#	Article	IF	CITATIONS
19	Isomerization in Gold Clusters upon O ₂ Adsorption. Journal of Physical Chemistry C, 2017, 121, 2661-2668.	1.5	27
20	Interface Effects in Hydrogen Elimination Reaction from Isopropanol by Ni ₁₃ Cluster on Î,-Al ₂ O ₃ (010) Surface. Journal of Physical Chemistry C, 2017, 121, 3488-3495.	1.5	13
21	Two-Dimensional Corrugated Porous Carbon-, Nitrogen-Framework/Metal Heterojunction for Efficient Multielectron Transfer Processes with Controlled Kinetics. ACS Nano, 2017, 11, 1770-1779.	7.3	50
22	Excess charge driven dissociative hydrogen adsorption on Ti ₂ O ₄ ^{â^'} . Physical Chemistry Chemical Physics, 2017, 19, 23154-23161.	1.3	16
23	Atomically Thin Hexagonal Boron Nitride Nanofilm for Cu Protection: The Importance of Film Perfection. Advanced Materials, 2017, 29, 1603937.	11.1	63
24	When Inert Becomes Active: A Fascinating Route for Catalyst Design. Chemical Record, 2016, 16, 2324-2337.	2.9	22
25	Highly Efficient Electrochemical Hydrogen Evolution Reaction at Insulating Boron Nitride Nanosheet on Inert Gold Substrate. Scientific Reports, 2016, 6, 32217.	1.6	72
26	Gold nanoparticle decoration of insulating boron nitride nanosheet on inert gold electrode toward an efficient electrocatalyst for the reduction of oxygen to water. Electrochemistry Communications, 2016, 66, 53-57.	2.3	35
27	Long Range Functionalization of h-BN Monolayer by Carbon Doping. Journal of Physical Chemistry C, 2016, 120, 15993-16001.	1.5	42
28	Reactivity of Gold Clusters in the Regime of Structural Fluxionality. Journal of Physical Chemistry C, 2015, 119, 11120-11130.	1.5	40
29	From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy. ACS Nano, 2015, 9, 8997-9011.	7.3	127
30	Adsorption and Catalytic Activation of the Molecular Oxygen on the Metal Supported h-BN. Topics in Catalysis, 2014, 57, 1032-1041.	1.3	34
31	Application of Automated Reaction Path Search Methods to a Systematic Search of Single-Bond Activation Pathways Catalyzed by Small Metal Clusters: A Case Study on H–H Activation by Gold. Journal of Chemical Theory and Computation, 2014, 10, 1623-1630.	2.3	28
32	Boron Nitride Nanosheet on Gold as an Electrocatalyst for Oxygen Reduction Reaction: Theoretical Suggestion and Experimental Proof. Journal of the American Chemical Society, 2014, 136, 6542-6545.	6.6	231
33	Oxygen activation and dissociation on hâ€BN supported Au atoms. International Journal of Quantum Chemistry, 2013, 113, 443-452.	1.0	39
34	Functionalization of Monolayer h-BN by a Metal Support for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 21359-21370.	1.5	109
35	Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2013, 15, 2809.	1.3	95
36	CO oxidation on h-BN supported Au atom. Journal of Chemical Physics, 2013, 138, 034701.	1.2	71

#	Article	IF	CITATIONS
37	The h-BN surface effect on CO oxidation reaction catalyzed by supported gold atom. Journal of Physics: Conference Series, 2013, 438, 012003.	0.3	4
38	Catalytic Activity of Au and Au ₂ on the h-BN Surface: Adsorption and Activation of O ₂ . Journal of Physical Chemistry C, 2012, 116, 9054-9062.	1.5	84
39	A computational investigation of H2 adsorption and dissociation on Au nanoparticles supported on TiO2 surface. Faraday Discussions, 2011, 152, 185.	1.6	54
40	Role of the Support Effects on the Catalytic Activity of Gold Clusters: A Density Functional Theory Study. Catalysts, 2011, 1, 18-39.	1.6	38
41	Adsorption of Ethylene on Neutral, Anionic, and Cationic Gold Clusters. Journal of Physical Chemistry C, 2010, 114, 2484-2493.	1.5	61
42	Reactant-Promoted Oxygen Dissociation on Gold Clusters. Journal of Physical Chemistry Letters, 2010, 1, 1752-1757.	2.1	75
43	Impurity effect on the melting of nickel clusters as seen via molecular dynamics simulations. Physical Review B, 2009, 79, .	1.1	34
44	Cooperative Adsorption of O ₂ and C ₂ H ₄ on Small Gold Clusters. Journal of Physical Chemistry C, 2009, 113, 12930-12934.	1.5	53
45	Catalitic Activity of Gold Clusters. AIP Conference Proceedings, 2009, , .	0.3	5
46	Droplet model of an atomic cluster at a solid surface. Journal of Experimental and Theoretical Physics, 2008, 106, 678-689.	0.2	14
47	SIMULATION OF THE NANOINDENTATION PROCEDURE ON PURE NICKEL ON THE SMALLEST LENGTH SCALE: A SIMPLE ATOMISTIC LEVEL MODEL. , 2008, , 205-224.		0
48	Interplay of electronic and geometry shell effects in properties of neutral and charged Sr clusters. Physical Review A, 2007, 75, .	1.0	19
49	Structure and magnetism of lanthanum clusters. Physical Review A, 2006, 74, .	1.0	43
50	Polarizational bremsstrahlung from atomic clusters. Radiation Physics and Chemistry, 2006, 75, 1358-1379.	1.4	8
51	FISSION OF METAL CLUSTERS. International Journal of Modern Physics E, 2006, 15, 153-195.	0.4	12
52	Dissociation and fission of small sodium and strontium clusters. European Physical Journal D, 2005, 34, 93-96.	0.6	6
53	Geometrical and statistical factors in fission of small metal clusters. Physical Review B, 2005, 72, .	1.1	8
54	Stability of small neutral and charged strontium clusters. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, L129-L135.	0.6	9

#	Article	IF	CITATIONS
55	Rearrangement of cluster structure during fission processes. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, L7-L13.	0.6	6
56	Molecular Dynamics Simulations of Cluster Fission and Fusion Processes. Physica Scripta, 2004, 110, 319.	1.2	5
57	METAL CLUSTER FISSION: JELLIUM MODEL AND MOLECULAR DYNAMICS SIMULATIONS. , 2004, , 157-168.		2
58	<i>AB INITIO</i> CALCULATIONS AND MODELLING OF ATOMIC CLUSTER STRUCTURE. , 2004, , 51-65.		0
59	On the applicability of deformed jellium model to the description of metal clusters. European Physical Journal D, 2003, 24, 15-18.	0.6	7
60	Evolution of the electronic and ionic structure of Mg clusters with increase in cluster size. Physical Review A, 2003, 67, .	1.0	112
61	ON THE APPLICABILITY OF THE JELLIUM MODEL TO THE DESCRIPTION OF ALKALI CLUSTERS. International Journal of Modern Physics E, 2003, 12, 81-107.	0.4	21
62	METAL CLUSTER FISSION. , 2003, , .		0
63	Hartree-Fock approach for metal-cluster fission. Physical Review A, 2002, 65, .	1.0	9
64	Comparative study of metal-cluster fission in Hartree-Fock and local-density approximations. Physical Review A, 2002, 65, .	1.0	20
65	A relativistic description of the polarization mechanism of elastic bremsstrahlung. Journal of Experimental and Theoretical Physics, 2002, 94, 704-719.	0.2	12
66	Hartreeâ€Fock Deformed Jellium Calculations for Metallic Clusters. Journal of the Chinese Chemical Society, 2001, 48, 419-426.	0.8	8
67	A simple atomic model for hydrogen confined inside a prolate-shaped C60fullerene cage. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 2505-2511.	0.6	25
68	Hartree-Fock deformed jellium model for metallic clusters. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 3653-3664.	0.6	24
69	Manifestation of the Bethe ridge in the polarizational bremsstrahlung process. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, L179-L186.	0.6	2
70	The role of the polarization mechanism for emission of radiation by atoms over a broad photon frequency range. Journal of Experimental and Theoretical Physics, 1998, 87, 251-259.	0.2	15
71	Total bremsstrahlung spectra of 1 - 25 keV electrons on Ne and Ar. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, L115-L121.	0.6	20
72	Theoretical treatment of the bremsstrahlung process in the vicinity of giant atomic resonances. Physical Review A, 1996, 53, 2230-2238.	1.0	8

#	Article	IF	CITATIONS
73	Semi-empirical method for polarizational bremsstrahlung calculation. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79, 323-326.	0.8	5
74	Electron bremsstrahlung spectra on La near the 4d threshold. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, L611-L617.	0.6	6
75	Bremsstrahlung Emission in Collisions of Electrons with Atoms and Clusters. , 1996, , 263-278.		1
76	New method for the polarizational bremsstrahlung calculation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 4947-4962.	0.6	19
77	Theoretical treatment of bremsstrahlung spectra in the vicinity of giant atomic resonances: application to Ba. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, L155-L160.	0.6	17
78	Superior Multielectronâ€Transferring Energy Storage by Ï€â€d Conjugated Frameworks. Small, 0, , 2202861.	5.2	1