## Brian C Weinrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7602690/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Multiple genetic paths including massive gene amplification allow <i>Mycobacterium tuberculosis</i><br>to overcome loss of ESX-3 secretion system substrates. Proceedings of the National Academy of<br>Sciences of the United States of America, 2022, 119, .                                                                                                                                         | 7.1  | 9         |
| 2  | High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation. Nature Immunology, 2020, 21, 86-100.                                                                                                                                                                                                                                                           | 14.5 | 32        |
| 3  | Characterization of Large Deletion Mutants of Mycobacterium tuberculosis Selected for Isoniazid<br>Resistance. Antimicrobial Agents and Chemotherapy, 2020, 64, .                                                                                                                                                                                                                                      | 3.2  | 3         |
| 4  | Drivers and sites of diversity in the DNA adenine methylomes of 93 Mycobacterium tuberculosis complex clinical isolates. ELife, 2020, 9, .                                                                                                                                                                                                                                                             | 6.0  | 24        |
| 5  | Genotyping of Mycobacterium tuberculosis Rifampin Resistance-Associated Mutations by Use of Data<br>from Xpert MTB/RIF Ultra Enables Large-Scale Tuberculosis Molecular Epidemiology Studies. Journal<br>of Clinical Microbiology, 2019, 58, .                                                                                                                                                         | 3.9  | 1         |
| 6  | Plasticity of <i>Mycobacterium tuberculosis</i> NADH dehydrogenases and their role in virulence.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1599-1604.                                                                                                                                                                                             | 7.1  | 58        |
| 7  | Vaginal microbiome modulates topical antiretroviral drug pharmacokinetics. JCI Insight, 2018, 3, .                                                                                                                                                                                                                                                                                                     | 5.0  | 30        |
| 8  | Rational Design of Biosafety Level 2-Approved, Multidrug-Resistant Strains of Mycobacterium<br>tuberculosis through Nutrient Auxotrophy. MBio, 2018, 9, .                                                                                                                                                                                                                                              | 4.1  | 50        |
| 9  | Arginine-deprivation–induced oxidative damage sterilizes <i>Mycobacterium tuberculosis</i> .<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9779-9784.                                                                                                                                                                                                 | 7.1  | 97        |
| 10 | Enhanced respiration prevents drug tolerance and drug resistance in <i>Mycobacterium<br/>tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America,<br>2017, 114, 4495-4500.                                                                                                                                                                                  | 7.1  | 157       |
| 11 | Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathogens, 2017, 13, e1006250.                                                                                                                                                                                                                                 | 4.7  | 74        |
| 12 | Herpes Simplex Virus (HSV)-2 Candidate Vaccine Virus Deleted in Glycoprotein D (ΔgD-2) Elicits High-Titer<br>Immunoglobulin (Ig)G2 Antibodies With Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC)<br>Activity, Protects Mice From Skin and Vaginal Challenge With Clinical Isolates of HSV-1 and HSV-2, and<br>Prevents the Establishment of Latency. Open Forum Infectious Diseases, 2016, 3, . | 0.9  | 0         |
| 13 | The Type of Growth Medium Affects the Presence of a Mycobacterial Capsule and Is Associated With<br>Differences in Protective Efficacy of BCG Vaccination Against <i>Mycobacterium tuberculosis</i> .<br>Journal of Infectious Diseases, 2016, 214, 426-437.                                                                                                                                           | 4.0  | 29        |
| 14 | Dual-Reporter Mycobacteriophages (Î $ $ <sup>2</sup> DRMs) Reveal Preexisting Mycobacterium tuberculosis Persistent Cells in Human Sputum. MBio, 2016, 7, .                                                                                                                                                                                                                                            | 4.1  | 67        |
| 15 | HSV-2 ΔgD elicits FcÎ <sup>3</sup> R-effector antibodies that protect against clinical isolates. JCI Insight, 2016, 1, .                                                                                                                                                                                                                                                                               | 5.0  | 56        |
| 16 | The p60 and NamA autolysins from <i>Listeria monocytogenes</i> contribute to host colonization and induction of protective memory. Cellular Microbiology, 2015, 17, 147-163.                                                                                                                                                                                                                           | 2.1  | 10        |
| 17 | Structural characterization of muropeptides from <i>Chlamydia trachomatis</i> peptidoglycan by<br>mass spectrometry resolves "chlamydial anomaly― Proceedings of the National Academy of Sciences<br>of the United States of America, 2015, 112, 11660-11665.                                                                                                                                          | 7.1  | 55        |
| 18 | Succinate Dehydrogenase is the Regulator of Respiration in Mycobacterium tuberculosis. PLoS<br>Pathogens, 2014, 10, e1004510.                                                                                                                                                                                                                                                                          | 4.7  | 87        |

BRIAN C WEINRICK

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Phosphorylation of KasB Regulates Virulence and Acid-Fastness in Mycobacterium tuberculosis. PLoS<br>Pathogens, 2014, 10, e1004115.                                                                                                      | 4.7  | 63        |
| 20 | Role for Mycobacterium tuberculosis Membrane Vesicles in Iron Acquisition. Journal of Bacteriology, 2014, 196, 1250-1256.                                                                                                                | 2.2  | 164       |
| 21 | Identification of a small molecule with activity against drug-resistant and persistent tuberculosis.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2510-7.                             | 7.1  | 188       |
| 22 | Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nature Communications, 2013, 4, 1881.                                                                                         | 12.8 | 261       |
| 23 | Keto-Mycolic Acid-Dependent Pellicle Formation Confers Tolerance to Drug-Sensitive Mycobacterium tuberculosis. MBio, 2013, 4, e00222-13.                                                                                                 | 4.1  | 103       |
| 24 | Alteration of Metabolic Program by whiB6 Enhances Tuberculosis Persistence. FASEB Journal, 2012, 26, 222.3.                                                                                                                              | 0.5  | 0         |
| 25 | NAD <sup>+</sup> auxotrophy is bacteriocidal for the tubercle bacilli. Molecular Microbiology, 2010, 76, 365-377.                                                                                                                        | 2.5  | 49        |
| 26 | Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an α-glucan pathway. Nature<br>Chemical Biology, 2010, 6, 376-384.                                                                                                     | 8.0  | 141       |
| 27 | Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of<br><i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United<br>States of America, 2010, 107, 21761-21766. | 7.1  | 177       |
| 28 | Efficacy and immunogenicity of Mycobacterium bovis ΔRD1 against aerosol M. bovis infection in neonatal calves. Vaccine, 2009, 27, 1201-1209.                                                                                             | 3.8  | 66        |
| 29 | Effect of Mild Acid on Gene Expression in Staphylococcus aureus. Journal of Bacteriology, 2004, 186, 8407-8423.                                                                                                                          | 2.2  | 173       |
| 30 | Restoration of Mga Function to aStreptococcus pyogenes Strain (M Type 50) That Is Virulent in Mice.<br>Infection and Immunity, 2001, 69, 1215-1220.                                                                                      | 2.2  | 9         |
| 31 | Role of Streptolysin O in a Mouse Model of Invasive Group A Streptococcal Disease. Infection and<br>Immunity, 2000, 68, 6384-6390.                                                                                                       | 2.2  | 90        |
| 32 | Role of Streptolysin O in a Mouse Model of Invasive Group A Streptococcal Disease. Infection and<br>Immunity, 2000, 68, 6384-6390.                                                                                                       | 2.2  | 8         |