## Zhenghua Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7602471/publications.pdf Version: 2024-02-01



ΖΗΕΝΟΗΠΑ ΖΗΛΝΟ

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Synergistic mechanism of combined ferrate and ultrafiltration process for shale gas wastewater treatment. Journal of Membrane Science, 2022, 641, 119921.                                                                          | 4.1 | 20        |
| 2  | Potential application of machine learning for exploring adsorption mechanisms of pharmaceuticals onto biochars. Chemosphere, 2022, 287, 132203.                                                                                    | 4.2 | 29        |
| 3  | Ti3C2/W18O49 hybrid membrane with visible-light-driven photocatalytic ability for selective dye separation. Separation and Purification Technology, 2022, 282, 120145.                                                             | 3.9 | 7         |
| 4  | Gravity-driven layered double hydroxide nanosheet membrane activated peroxymonosulfate system for micropollutant degradation. Journal of Hazardous Materials, 2022, 425, 127988.                                                   | 6.5 | 41        |
| 5  | Exploring the fate of dissolved organic matter at the molecular level in the reactive electrochemical ceramic membrane system using fluorescence spectroscopy and FT-ICR MS. Water Research, 2022, 210, 117979.                    | 5.3 | 30        |
| 6  | Honeycomb-like holey Co3O4 membrane triggered peroxymonosulfate activation for rapid degradation of organic contaminants. Science of the Total Environment, 2022, 814, 152698.                                                     | 3.9 | 36        |
| 7  | Two-dimensional nanoporous and lamellar membranes for water purification: Reality or a myth?.<br>Chemical Engineering Journal, 2022, 432, 134335.                                                                                  | 6.6 | 38        |
| 8  | Exploring the potential application of hybrid permonosulfate/reactive electrochemical ceramic membrane on treating humic acid-dominant wastewater. Separation and Purification Technology, 2022, 286, 120513.                      | 3.9 | 14        |
| 9  | Ultrahigh-permeance functionalized boron nitride membrane for nanoconfined heterogeneous catalysis. Chem Catalysis, 2022, 2, 550-562.                                                                                              | 2.9 | 23        |
| 10 | Confined heterogeneous catalysis by boron nitride-Co3O4 nanosheet cluster for peroxymonosulfate oxidation toward ranitidine removal. Chemical Engineering Journal, 2022, 435, 135126.                                              | 6.6 | 45        |
| 11 | Reactive electrochemical ceramic membrane for effective removal of high concentration humic acid:<br>Insights of different performance and mechanisms. Journal of Membrane Science, 2022, 651, 120460.                             | 4.1 | 19        |
| 12 | Exploring potential machine learning application based on big data for prediction of wastewater quality from different full-scale wastewater treatment plants. Science of the Total Environment, 2022, 832, 154930.                | 3.9 | 32        |
| 13 | Three-dimensional ordered mesoporous Co3O4/peroxymonosulfate triggered nanoconfined<br>heterogeneous catalysis for rapid removal of ranitidine in aqueous solution. Chemical Engineering<br>Journal, 2022, 443, 136495.            | 6.6 | 34        |
| 14 | Ti4O7 reactive electrochemical membrane for humic acid removal: Insights of electrosorption and electrosorption and Purification Technology, 2022, 293, 121112.                                                                    | 3.9 | 16        |
| 15 | In-Situ Sludge Reduction in Membrane-Controlled Anoxic-Oxic-Anoxic Bioreactor: Performance and Mechanism. Membranes, 2022, 12, 659.                                                                                                | 1.4 | 1         |
| 16 | Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels.<br>Nature Communications, 2022, 13, .                                                                                                 | 5.8 | 97        |
| 17 | Laminar membranes assembled by ultrathin cobalt-copper oxide nanosheets for nanoconfined catalytic degradation of contaminants. Chemical Engineering Journal, 2022, 449, 137811.                                                   | 6.6 | 29        |
| 18 | Elucidating the impacts of intermittent in-situ ozonation in a ceramic membrane bioreactor:<br>Micropollutant removal, microbial community evolution and fouling mechanisms. Journal of<br>Hazardous Materials, 2021, 402, 123730. | 6.5 | 36        |

ZHENGHUA ZHANG

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Catalytic degradation of ranitidine using novel magnetic Ti3C2-based MXene nanosheets modified with<br>nanoscale zero-valent iron particles. Applied Catalysis B: Environmental, 2021, 284, 119720.                                                           | 10.8 | 75        |
| 20 | Characterization of dissolved organic matter for understanding the adsorption on nanomaterials in aquatic environment: A review. Chemosphere, 2021, 269, 128690.                                                                                              | 4.2  | 25        |
| 21 | Rapid and long-lasting acceleration of zero-valent iron<br>nanoparticles@Ti <sub>3</sub> C <sub>2</sub> -based MXene/peroxymonosulfate oxidation with<br>bi-active centers toward ranitidine removal. Journal of Materials Chemistry A, 2021, 9, 19817-19833. | 5.2  | 53        |
| 22 | Novel MoS2/NOMC electrodes with enhanced capacitive deionization performances. Chemical Engineering Journal, 2021, 409, 128200.                                                                                                                               | 6.6  | 53        |
| 23 | Fluorescence moieties as a surrogate for residual chlorine in three drinking water networks.<br>Chemical Engineering Journal, 2021, 411, 128519.                                                                                                              | 6.6  | 13        |
| 24 | A year-long cyclic pattern of dissolved organic matter in the tap water of a metropolitan city revealed by fluorescence spectroscopy. Science of the Total Environment, 2021, 771, 144850.                                                                    | 3.9  | 8         |
| 25 | Determining the leading sources of N-nitrosamines and dissolved organic matter in four reservoirs in Southern China. Science of the Total Environment, 2021, 771, 145409.                                                                                     | 3.9  | 12        |
| 26 | Photocatalytic degradation of ranitidine and reduction of nitrosamine dimethylamine formation<br>potential over MXene–Ti3C2/MoS2 under visible light irradiation. Journal of Hazardous Materials,<br>2021, 413, 125424.                                       | 6.5  | 76        |
| 27 | Occurrence and fate of N-nitrosamines in three full-scale drinking water treatment systems with different treatment trains. Science of the Total Environment, 2021, 783, 146982.                                                                              | 3.9  | 11        |
| 28 | Ceramic membrane technology for water and wastewater treatment: A critical review of<br>performance, full-scale applications, membrane fouling and prospects. Chemical Engineering Journal,<br>2021, 418, 129481.                                             | 6.6  | 217       |
| 29 | Understanding the role of in-situ ozonation in Fe(II)-dosed membrane bioreactor (MBR) for membrane<br>fouling mitigation. Journal of Membrane Science, 2021, 633, 119400.                                                                                     | 4.1  | 15        |
| 30 | Algogenic organic matter fouling alleviation in membrane distillation by peroxymonosulfate (PMS):<br>Role of PMS concentration and activation temperature. Desalination, 2021, 516, 115225.                                                                   | 4.0  | 33        |
| 31 | Polysaccharide-derived biopolymeric nanomaterials for wastewater treatment. , 2021, , 447-469.                                                                                                                                                                |      | 6         |
| 32 | Synergistic effects of combining ozonation, ceramic membrane filtration and biologically active carbon filtration for wastewater reclamation. Journal of Hazardous Materials, 2020, 382, 121091.                                                              | 6.5  | 40        |
| 33 | MoS2/RGO composites for photocatalytic degradation of ranitidine and elimination of NDMA formation potential under visible light. Chemical Engineering Journal, 2020, 383, 123084.                                                                            | 6.6  | 64        |
| 34 | Capacitive deionization with nitrogen-doped highly ordered mesoporous carbon electrodes. Chemical<br>Engineering Journal, 2020, 380, 122514.                                                                                                                  | 6.6  | 122       |
| 35 | TiO2-based catalysts for photocatalytic reduction of aqueous oxyanions: State-of-the-art and future prospects. Environment International, 2020, 136, 105453.                                                                                                  | 4.8  | 68        |
| 36 | Powdered activated carbon – Membrane bioreactor (PAC-MBR): Impacts of high PAC concentration on<br>micropollutant removal and microbial communities. Science of the Total Environment, 2020, 745,<br>141090.                                                  | 3.9  | 45        |

ZHENGHUA ZHANG

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Evaluating the impacts of a high concentration of powdered activated carbon in a ceramic membrane<br>bioreactor: Mixed liquor properties, hydraulic performance and fouling mechanism. Journal of<br>Membrane Science, 2020, 616, 118561. | 4.1  | 17        |
| 38 | Zâ€scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure<br>under visible light. Applied Catalysis B: Environmental, 2020, 278, 119251.                                                              | 10.8 | 163       |
| 39 | Electrochemical membrane bioreactors: State-of-the-art and future prospects. Science of the Total Environment, 2020, 741, 140233.                                                                                                         | 3.9  | 44        |
| 40 | Seasonal occurrence of N-nitrosamines and their association with dissolved organic matter in<br>full-scale drinking water systems: Determination by LC-MS and EEM-PARAFAC. Water Research, 2020,<br>183, 116096.                          | 5.3  | 36        |
| 41 | Exploring the relative changes in dissolved organic matter for assessing the water quality of<br>full-scale drinking water treatment plants using a fluorescence ratio approach. Water Research,<br>2020, 183, 116125.                    | 5.3  | 47        |
| 42 | Solar driven selfâ´'sustainable photoelectrochemical bacteria inactivation in scaleâ´'up reactor<br>utilizing largeâ´'scale fabricable Ti/MoS2/MoOx photoanode. Journal of Hazardous Materials, 2020, 392,<br>122292.                     | 6.5  | 32        |
| 43 | Fate and role of fluorescence moieties in extracellular polymeric substances during biological wastewater treatment: A review. Science of the Total Environment, 2020, 718, 137291.                                                       | 3.9  | 45        |
| 44 | Nutrients removal in membrane bioreactors for wastewater treatment. , 2020, , 163-180.                                                                                                                                                    |      | 1         |
| 45 | Capacitive deionization with MoS2/g-C3N4 electrodes. Desalination, 2020, 479, 114348.                                                                                                                                                     | 4.0  | 63        |
| 46 | Coupling ferrate pretreatment and in-situ ozonation/ceramic membrane filtration for wastewater reclamation: Water quality and membrane fouling. Journal of Membrane Science, 2019, 590, 117310.                                           | 4.1  | 36        |
| 47 | Fenton cleaning strategy for ceramic membrane fouling in wastewater treatment. Journal of<br>Environmental Sciences, 2019, 85, 189-199.                                                                                                   | 3.2  | 21        |
| 48 | Removal of calcium ions from water by selective electrosorption using target-ion specific nanocomposite electrode. Water Research, 2019, 160, 445-453.                                                                                    | 5.3  | 57        |
| 49 | Fe(II)-dosed ceramic membrane bioreactor for wastewater treatment: Nutrient removal, microbial community and membrane fouling analysis. Science of the Total Environment, 2019, 664, 116-126.                                             | 3.9  | 48        |
| 50 | A comparative study of ferrous, ferric and ferrate pretreatment for ceramic membrane fouling alleviation in reclaimed water treatment. Separation and Purification Technology, 2019, 217, 118-127.                                        | 3.9  | 30        |
| 51 | Photo-electrochemical oxidation of hypophosphite and phosphorous recovery by<br>UV/Fe2+/peroxydisulfate with electrochemical process. Chemical Engineering Journal, 2019, 359,<br>1075-1085.                                              | 6.6  | 14        |
| 52 | Capacitative deionization using commercial activated carbon fiber decorated with polyaniline. Journal of Colloid and Interface Science, 2019, 537, 247-255.                                                                               | 5.0  | 63        |
| 53 | Comparison of long-term ceramic membrane bioreactors without and with in-situ ozonation in wastewater treatment: Membrane fouling, effluent quality and microbial community. Science of the Total Environment, 2019, 652, 788-799.        | 3.9  | 47        |
| 54 | Coupling in-situ ozonation with ferric chloride addition for ceramic ultrafiltration membrane fouling mitigation in wastewater treatment: Quantitative fouling analysis. Journal of Membrane Science, 2018, 555, 307-317.                 | 4.1  | 33        |

ZHENGHUA ZHANG

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Integration of ferrate (VI) pretreatment and ceramic membrane reactor for membrane fouling mitigation in reclaimed water treatment. Journal of Membrane Science, 2018, 552, 315-325.                                                                      | 4.1 | 38        |
| 56 | Ligand-promoted reductive cleaning of iron-fouled membranes from submerged membrane bioreactors. Journal of Membrane Science, 2018, 545, 126-132.                                                                                                         | 4.1 | 3         |
| 57 | Does pre-ozonation or in-situ ozonation really mitigate the protein-based ceramic membrane fouling<br>in the integrated process of ozonation coupled with ceramic membrane filtration?. Journal of<br>Membrane Science, 2018, 548, 254-262.               | 4.1 | 61        |
| 58 | Synergistic effect of ferrate (VI)-ozone integrated pretreatment on the improvement of water quality and fouling alleviation of ceramic UF membrane in reclaimed water treatment. Journal of Membrane Science, 2018, 567, 216-227.                        | 4.1 | 33        |
| 59 | Ti4O7/g-C3N4 for Visible Light Photocatalytic Oxidation of Hypophosphite: Effect of Mass Ratio of<br>Ti4O7/g-C3N4. Frontiers in Chemistry, 2018, 6, 313.                                                                                                  | 1.8 | 13        |
| 60 | Ti4O7/g-C3N4 Visible Light Photocatalytic Performance on Hypophosphite Oxidation: Effect of Annealing Temperature. Frontiers in Chemistry, 2018, 6, 37.                                                                                                   | 1.8 | 16        |
| 61 | New insight into the effect of mixed liquor properties changed by pre-ozonation on ceramic UF membrane fouling in wastewater treatment. Chemical Engineering Journal, 2017, 314, 670-680.                                                                 | 6.6 | 53        |
| 62 | A comparative study of pre-ozonation and in-situ ozonation on mitigation of ceramic UF membrane fouling caused by alginate. Journal of Membrane Science, 2017, 538, 50-57.                                                                                | 4.1 | 45        |
| 63 | Double-win effects of in-situ ozonation on improved filterability of mixed liquor and ceramic UF<br>membrane fouling mitigation in wastewater treatment?. Journal of Membrane Science, 2017, 533, 112-120.                                                | 4.1 | 42        |
| 64 | Impact of polymeric membrane breakage on drinking water quality and an online detection method of<br>the breakage. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and<br>Environmental Engineering, 2017, 52, 1126-1132. | 0.9 | 0         |
| 65 | Effect of pre-ozonation on mitigation of ceramic UF membrane fouling caused by algal extracellular organic matters. Chemical Engineering Journal, 2016, 294, 157-166.                                                                                     | 6.6 | 106       |
| 66 | Effect of in-situ ozonation on ceramic UF membrane fouling mitigation in algal-rich water treatment.<br>Journal of Membrane Science, 2016, 498, 116-124.                                                                                                  | 4.1 | 97        |
| 67 | Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors. Water Research, 2015, 69, 210-222.                                                                                                        | 5.3 | 105       |
| 68 | Ascorbic acid-mediated reductive cleaning of iron-fouled membranes from submerged membrane bioreactors. Journal of Membrane Science, 2015, 477, 194-202.                                                                                                  | 4.1 | 15        |
| 69 | Cleaning strategies for iron-fouled membranes from submerged membrane bioreactor treatment of wastewaters. Journal of Membrane Science, 2015, 475, 9-21.                                                                                                  | 4.1 | 30        |
| 70 | Fabrication and characterization of novel SiO2-PAMPS/PSF hybrid ultrafiltration membrane with high water flux. Desalination, 2012, 297, 59-71.                                                                                                            | 4.0 | 30        |
| 71 | Fabrication of polysulfone ultrafiltration membranes of a density gradient cross section with good anti-pressure stability and relatively high water flux. Desalination, 2011, 269, 239-248.                                                              | 4.0 | 50        |
| 72 | Study on removal of organic matters in water by PVA modified PA-TFC nanofiltration membrane.<br>Desalination and Water Treatment, 2011, 34, 75-80.                                                                                                        | 1.0 | 6         |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effect of zero shear viscosity of the casting solution on the morphology and permeability of polysulfone membrane prepared via the phase-inversion process. Desalination, 2010, 260, 43-50. | 4.0 | 75        |