Robert E Blankenship

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7602425/publications.pdf

Version: 2024-02-01

266 papers 21,385 citations

20817 60 h-index 138 g-index

279 all docs

279 docs citations

times ranked

279

15041 citing authors

#	Article	IF	CITATIONS
1	Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 2007, 446, 782-786.	27.8	2,685
2	Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science, 2011, 332, 805-809.	12.6	1,369
3	Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature, 2005, 434, 625-628.	27.8	1,115
4	Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12766-12770.	7.1	886
5	Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8529-8536.	7.1	751
6	The Natural History of Nitrogen Fixation. Molecular Biology and Evolution, 2004, 21, 541-554.	8.9	698
7	Evolution of Photosynthesis. Annual Review of Plant Biology, 2011, 62, 515-548.	18.7	593
8	Origin and early evolution of photosynthesis. Photosynthesis Research, 1992, 33, 91-111.	2.9	469
9	Contribution of Aerobic Photoheterotrophic Bacteria to the Carbon Cycle in the Ocean. Science, 2001, 292, 2492-2495.	12.6	400
10	Expanding the solar spectrum used by photosynthesis. Trends in Plant Science, 2011, 16, 427-431.	8.8	356
11	The origin and evolution of oxygenic photosynthesis. Trends in Biochemical Sciences, 1998, 23, 94-97.	7.5	342
12	Spectral Signatures of Photosynthesis. I. Review of Earth Organisms. Astrobiology, 2007, 7, 222-251.	3.0	313
13	Phycobilisomes Supply Excitations to Both Photosystems in a Megacomplex in Cyanobacteria. Science, 2013, 342, 1104-1107.	12.6	299
14	An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9306-9310.	7.1	298
15	Early Evolution of Photosynthesis. Plant Physiology, 2010, 154, 434-438.	4.8	282
16	Whole-Genome Analysis of Photosynthetic Prokaryotes. Science, 2002, 298, 1616-1620.	12.6	278
17	The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynthesis Research, 2009, 100, 79-87.	2.9	273
18	Spectral Signatures of Photosynthesis. II. Coevolution with Other Stars And The Atmosphere on Extrasolar Worlds. Astrobiology, 2007, 7, 252-274.	3.0	253

#	Article	IF	CITATIONS
19	Chlorosome antenna complexes from green photosynthetic bacteria. Photosynthesis Research, 2013, 116, 315-331.	2.9	218
20	Niche adaptation and genome expansion in the chlorophyll $\langle i \rangle d \langle i \rangle$ -producing cyanobacterium $\langle i \rangle A$ caryochloris marina $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2005-2010.	7.1	210
21	Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum 1 1Edited by R. Huber. Journal of Molecular Biology, 1997, 271, 456-471.	4.2	196
22	A viewpoint: Why chlorophyll a?. Photosynthesis Research, 2009, 99, 85-98.	2.9	195
23	Membrane orientation of the FMO antenna protein from <i>Chlorobaculum tepidum</i> as determined by mass spectrometry-based footprinting. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6134-6139.	7.1	186
24	Radical-pair decay kinetics, triplet yields and delayed fluorescence from bacterial reaction centers. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 680, 44-59.	1.0	177
25	Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry, 1987, 26, 8644-8652.	2.5	175
26	Thinking About the Evolution of Photosynthesis. Photosynthesis Research, 2004, 80, 373-386.	2.9	172
27	Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 850-855.	7.1	165
28	The Complete Genome Sequence of Roseobacter denitrificans Reveals a Mixotrophic Rather than Photosynthetic Metabolism. Journal of Bacteriology, 2007, 189, 683-690.	2.2	146
29	Native Electrospray and Electron-Capture Dissociation FTICR Mass Spectrometry for Top-Down Studies of Protein Assemblies. Analytical Chemistry, 2011, 83, 5598-5606.	6.5	141
30	Extinction coefficient for red-shifted chlorophylls: Chlorophyll d and chlorophyll f. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1292-1298.	1.0	124
31	Characterization of Chlorobium tepidum Chlorosomes: A Calculation of Bacteriochlorophyll c per Chlorosome and Oligomer Modeling. Biophysical Journal, 2003, 85, 2560-2565.	0.5	120
32	Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry, 1989, 28, 9898-9904.	2.5	119
33	Conservation of Distantly Related Membrane Proteins: Photosynthetic Reaction Centers Share a Common Structural Core. Molecular Biology and Evolution, 2006, 23, 2001-2007.	8.9	118
34	Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynthesis Research, 2010, 106, 227-238.	2.9	112
35	Antenna Complexes from Green Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, 2003, , 195-217.	1.0	109
36	The Genome of <i>Heliobacterium modesticaldum</i> , a Phototrophic Representative of the <i>Firmicutes</i> Containing the Simplest Photosynthetic Apparatus. Journal of Bacteriology, 2008, 190, 4687-4696.	2.2	109

3

#	Article	IF	CITATIONS
37	The structure of the FMO protein from Chlorobium tepidum at 2.2 A resolution. Photosynthesis Research, 2003, 75, 49-55.	2.9	107
38	Native electrospray and electron-capture dissociation in FTICR mass spectrometry provide top-down sequencing of a protein component in an intact protein assembly. Journal of the American Society for Mass Spectrometry, 2010, 21, 1966-1968.	2.8	103
39	Time-Resolved Absorption and Emission Show that the CP43†Antenna Ring of Iron-StressedSynechocystissp. PCC6803 Is Efficiently Coupled to the Photosystem I Reaction Center Core,. Biochemistry, 2003, 42, 3893-3903.	2.5	99
40	Excitation energy flow in chlorosome antennas of green photosynthetic bacteria. The Journal of Physical Chemistry, 1989, 93, 7503-7509.	2.9	98
41	New Class of Bacterial Membrane Oxidoreductases. Biochemistry, 2005, 44, 10037-10045.	2.5	96
42	Light harvesting in phototrophic bacteria: structure and function. Biochemical Journal, 2017, 474, 2107-2131.	3.7	96
43	Native Mass Spectrometry Characterization of Intact Nanodisc Lipoprotein Complexes. Analytical Chemistry, 2012, 84, 8957-8960.	6.5	95
44	Coherent wavepackets in the Fenna–Matthews–Olson complex are robust to excitonic-structure perturbations caused by mutagenesis. Nature Chemistry, 2018, 10, 177-183.	13.6	93
45	Molecular Mechanism of Photoactivation and Structural Location of the Cyanobacterial Orange Carotenoid Protein. Biochemistry, 2014, 53, 13-19.	2.5	92
46	Time-Resolved Fluorescence and Absorption Spectroscopy of Photosystem I. Biochemistry, 1994, 33, 3185-3192.	2.5	91
47	Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics, 2011, 12, 334.	2.8	90
48	The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochemical and Photobiological Sciences, 2005, 4, 1060.	2.9	85
49	Spectral expansion and antenna reduction can enhance photosynthesis for energy production. Current Opinion in Chemical Biology, 2013, 17, 457-461.	6.1	85
50	A unique photosynthetic reaction center from Heliobacterium chlorum. FEBS Letters, 1985, 182, 345-349.	2.8	83
51	Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology, 2004, 2, 199-203.	2.4	81
52	Menaquinone is the sole quinone in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 723, 376-382.	1.0	76
53	Both Forward and Reverse TCA Cycles Operate in Green Sulfur Bacteria. Journal of Biological Chemistry, 2010, 285, 35848-35854.	3.4	75
54	Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1015, 457-463.	1.0	71

#	Article	IF	CITATIONS
55	Excitation Dynamics and Heterogeneity of Energy Equilibration in the Core Antenna of Photosystem I from the CyanobacteriumSynechocystis sp.PCC 6803â€. Biochemistry, 2000, 39, 1489-1498.	2.5	71
56	Primary photochemistry in the facultative green photosynthetic bacterium Chloroflexus aurantiacus. Journal of Cellular Biochemistry, 1983, 22, 251-261.	2.6	69
57	Isolation and Characterization of the B798 Light-Harvesting Baseplate from the Chlorosomes of Chloroflexus aurantiacusâ€. Biochemistry, 2003, 42, 10246-10251.	2.5	69
58	Native Electrospray Mass Spectrometry Reveals the Nature and Stoichiometry of Pigments in the FMO Photosynthetic Antenna Protein. Biochemistry, 2011, 50, 3502-3511.	2.5	69
59	REDOX REGULATION OF ENERGY TRANSFER EFFICIENCY IN ANTENNAS OF GREEN PHOTOSYNTHETIC BACTERIA. Photochemistry and Photobiology, 1993, 57, 103-107.	2.5	65
60	Carbohydrate Metabolism and Carbon Fixation in Roseobacter denitrificans OCh114. PLoS ONE, 2009, 4, e7233.	2.5	65
61	Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus. Biochemistry, 1987, 26, 8652-8658.	2.5	64
62	Linker-Free Deposition and Adhesion of Photosystem I onto Nanostructured TiO ₂ for Biohybrid Photoelectrochemical Cells. Langmuir, 2015, 31, 1675-1682.	3. 5	62
63	Energy transfer kinetics in whole cells and isolated chlorosomes of green photosynthetic bacteria. Photosynthesis Research, 1990, 26, 39-48.	2.9	61
64	Structure of Chlorosomes from the Green Filamentous Bacterium <i>Chloroflexus aurantiacus</i> Journal of Bacteriology, 2009, 191, 6701-6708.	2.2	60
65	Cryo-EM structure of the RC-LH core complex from an early branching photosynthetic prokaryote. Nature Communications, 2018, 9, 1568.	12.8	59
66	Robustness of electronic coherence in the Fenna–Matthews–Olson complex to vibronic and structural modifications. Faraday Discussions, 2011, 150, 459.	3.2	58
67	Fast Photochemical Oxidation of Proteins Maps the Topology of Intrinsic Membrane Proteins: Light-Harvesting Complex 2 in a Nanodisc. Analytical Chemistry, 2016, 88, 8827-8834.	6. 5	56
68	Dramatic Domain Rearrangements of the Cyanobacterial Orange Carotenoid Protein upon Photoactivation. Biochemistry, 2016, 55, 1003-1009.	2.5	56
69	Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I. Photosynthesis Research, 1992, 32, 11-22.	2.9	55
70	Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase–HliC/D complex. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1430-1439.	1.0	54
71	Förster energy transfer in chlorosomes of green photosynthetic bacteria. Journal of Photochemistry and Photobiology B: Biology, 1992, 15, 171-179.	3.8	53
72	Redox effects on the bacteriochlorophyll \hat{l}_{\pm} -containing Fenna-Matthews-Olson protein from Chlorobium tepidum. Photosynthesis Research, 1994, 41, 89-96.	2.9	53

#	Article	IF	CITATIONS
73	Delayed Fluorescence from Fe-S Type Photosynthetic Reaction Centers at Low Redox Potential. Biochemistry, 1994, 33, 3096-3105.	2.5	53
74	Spectroscopic Properties of the Main-Form and High-Salt Peridinina "Chlorophyll a Proteins from Amphidinium carterae. Biochemistry, 2004, 43, 1478-1487.	2.5	53
75	Electrospray-assisted characterization and deposition of chlorosomes to fabricate a biomimetic light-harvesting device. Energy and Environmental Science, 2010, 3, 216-222.	30.8	52
76	Spectroscopic evidence for the presence of an iron-sulfur center similar to Fx of Photosystem I inHeliobacillus mobilis. Photosynthesis Research, 1994, 41, 115-123.	2.9	51
77	Electron transport in green photosynthetic bacteria. Photosynthesis Research, 1985, 6, 317-333.	2.9	50
78	Crystal structure of auracyanin, a "blue―copper protein from the green thermophilic photosynthetic bacterium Chloroflexus aurantiacus11Edited by R Huber. Journal of Molecular Biology, 2001, 306, 47-67.	4.2	50
79	Metabolic Flux Analysis of the Mixotrophic Metabolisms in the Green Sulfur Bacterium Chlorobaculum tepidum. Journal of Biological Chemistry, 2010, 285, 39544-39550.	3.4	50
80	Native mass spectrometry of photosynthetic pigment–protein complexes. FEBS Letters, 2013, 587, 1012-1020.	2.8	50
81	Bacteriochlorophyll f: properties of chlorosomes containing the "forbidden chlorophyll― Frontiers in Microbiology, 2012, 3, 298.	3.5	49
82	Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms. Journal of Biological Chemistry, 2018, 293, 5018-5025.	3.4	49
83	Fluorescence lifetimes of dimers and higher oligomers of bacteriochlorophyll c from Chlorobium limicola. Photosynthesis Research, 1990, 25, 1-10.	2.9	48
84	Ultrafast Energy Transfer in Chlorosomes from the Green Photosynthetic BacteriumChloroflexus aurantiacus. The Journal of Physical Chemistry, 1996, 100, 3320-3322.	2.9	48
85	The evolutionary development of the protein complement of Photosystem 2. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1655, 133-139.	1.0	48
86	Dynamics of Gene Duplication in the Genomes of Chlorophyll d-Producing Cyanobacteria: Implications for the Ecological Niche. Genome Biology and Evolution, 2011, 3, 601-613.	2.5	48
87	Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1955-1963.	1.0	47
88	Picosecond measurements of the primary photochemical events in reaction centers isolated from the facultative green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Letters, 1983, 158, 73-78.	2.8	46
89	Formation and decay of radical-pair state P+Iâ^' in Chloroflexus aurantiacus reaction centers. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 850, 275-285.	1.0	46
90	Auracyanin, a blue copper protein from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochemistry, 1988, 27, 7858-7863.	2.5	46

#	Article	IF	CITATIONS
91	Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148064.	1.0	46
92	Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4486-93.	7.1	45
93	Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein. Nature Communications, 2019, 10, 1172.	12.8	45
94	Spectroscopic properties of the Chlorophyll a–Chlorophyll c 2–Peridinin-Protein-Complex (acpPC) from the coral symbiotic dinoflagellate Symbiodinium. Photosynthesis Research, 2014, 120, 125-139.	2.9	44
95	Structural studies show energy transfer within stabilized phycobilisomes independent of the mode of rod–core assembly. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 385-395.	1.0	43
96	Specific Mutation Near the Primary Donor in Photosystem I from Chlamydomonas reinhardtii Alters the Trapping Time and Spectroscopic Properties of P700. Biochemistry, 1997, 36, 2898-2907.	2.5	42
97	The light intensity dependence of protochlorophyllide photoconversion and its significance to the catalytic mechanism of protochlorophyllide reductase. FEBS Letters, 1996, 398, 235-238.	2.8	41
98	Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth. BMC Microbiology, 2010, 10, 150.	3.3	41
99	Triplet Excited State Energies and Phosphorescence Spectra of (Bacterio)Chlorophylls. Journal of Physical Chemistry B, 2014, 118, 7221-7232.	2.6	41
100	Isolation and characterization of the membrane-bound cytochrome c-554 from the thermophilic green photosynthetic bacterium Chloroflexus aurantiacus. Photosynthesis Research, 1990, 23, 29-38.	2.9	40
101	Excitation delocalization in the bacteriochlorophyllcantenna of the green bacteriumChloroflexus aurantiacusas revealed by ultrafast pump-probe spectroscopy. FEBS Letters, 1998, 430, 323-326.	2.8	37
102	Structural Analysis of Alternative Complex III in the Photosynthetic Electron Transfer Chain of <i>Chloroflexus aurantiacus</i> . Biochemistry, 2010, 49, 6670-6679.	2.5	37
103	Alternative Complex III from phototrophic bacteria and its electron acceptor auracyanin. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1383-1391.	1.0	37
104	Secondary Electron Transfer Processes in Membranes of Heliobacillus mobilis. Biochemistry, 1995, 34, 12761-12767.	2.5	36
105	Enzymatic activity of the alternative complex III as a menaquinol:auracyanin oxidoreductase in the electron transfer chain of <i>Chloroflexus aurantiacus</i> . FEBS Letters, 2009, 583, 3275-3279.	2.8	36
106	Directed assembly of the thylakoid membrane on nanostructured TiO ₂ for a photo-electrochemical cell. Nanoscale, 2016, 8, 1868-1872.	5.6	35
107	Far-red light acclimation in diverse oxygenic photosynthetic organisms. Photosynthesis Research, 2019, 142, 349-359.	2.9	35
108	Effect of Iron on Growth and Ultrastructure of Acaryochloris marina. Applied and Environmental Microbiology, 2005, 71, 8606-8610.	3.1	34

#	Article	IF	CITATIONS
109	Recent advances in mapping environmental microbial metabolisms through ¹³ C isotopic fingerprints. Journal of the Royal Society Interface, 2012, 9, 2767-2780.	3.4	34
110	Low-Temperature Spectroscopic Properties of the Peridinin–Chlorophyll <i>a</i> –Protein (PCP) Complex from the Coral Symbiotic Dinoflagellate <i>Symbiodinium</i> B, 2013, 117, 11091-11099.	2.6	34
111	Characterization of a newly isolated freshwater Eustigmatophyte alga capable of utilizing far-red light as its sole light source. Photosynthesis Research, 2018, 135, 177-189.	2.9	34
112	A novel chlorophyll protein complex in the repair cycle of photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21907-21913.	7.1	34
113	On the interface of light-harvesting antenna complexes and reaction centers in oxygenic photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 148079.	1.0	34
114	Role of the AcsF Protein in <i>Chloroflexus aurantiacus</i> . Journal of Bacteriology, 2009, 191, 3580-3587.	2.2	33
115	The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium. Biochemical Journal, 2011, 440, 51-61.	3.7	33
116	Characterization of the peridinin–chlorophyll a-protein complex in the dinoflagellate Symbiodinium. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 983-989.	1.0	33
117	Ultrafast excitation dynamics of low energy pigments in reconstituted peripheral light-harvesting complexes of photosystem I. FEBS Letters, 2000, 471, 89-92.	2.8	32
118	The Ultrastructure of Chlorobium tepidum Chlorosomes Revealed by Electron Microscopy. Photosynthesis Research, 2005, 86, 145-154.	2.9	32
119	Variable fluorescence in green sulfur bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 106-113.	1.0	32
120	Metabolic flexibility revealed in the genome of the cyst-forming \hat{l}_{\pm} -1 proteobacterium Rhodospirillum centenum. BMC Genomics, 2010, 11, 325.	2.8	32
121	PROPERTIES OF ZINC AND MAGNESIUM METHYL BACTERIOPHEOPHORBIDE <i>d</i> AND THEIR AGGREGATES. Photochemistry and Photobiology, 1993, 58, 290-295.	2.5	31
122	Low Light Adaptation: Energy Transfer Processes in Different Types of Light Harvesting Complexes from Rhodopseudomonas palustris. Biophysical Journal, 2009, 97, 3019-3028.	0.5	31
123	Characterization of the FMO protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum. Photosynthesis Research, 2010, 104, 201-209.	2.9	31
124	Characterisation of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1849-1860.	1.0	31
125	Dynamics of Energy and Electron Transfer in the FMO-Reaction Center Core Complex from the Phototrophic Green Sulfur Bacterium <i>Chlorobaculum tepidum</i> . Journal of Physical Chemistry B, 2015, 119, 8321-8329.	2.6	31
126	Phycobilisomes Harbor FNR _L in Cyanobacteria. MBio, 2019, 10, .	4.1	31

#	Article	IF	CITATIONS
127	Light-Harvesting Antenna System from the Phototrophic Bacterium <i>Roseiflexus castenholzii</i> Biochemistry, 2010, 49, 7524-7531.	2.5	30
128	The three-dimensional structure of the FMO protein from Pelodictyon phaeum and the implications for energy transfer. Photosynthesis Research, 2011, 107, 139-150.	2.9	30
129	Hydrogen–Deuterium Exchange Mass Spectrometry Reveals the Interaction of Fenna–Matthews–Olson Protein and Chlorosome CsmA Protein. Biochemistry, 2012, 51, 187-193.	2.5	30
130	Spectroscopic insights into the decreased efficiency of chlorosomes containing bacteriochlorophyll f. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 493-501.	1.0	30
131	Probing the excitonic landscape of the Chlorobaculum tepidum Fenna-Matthews-Olson (FMO) complex: a mutagenesis approach. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 288-296.	1.0	30
132	Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
133	Auracyanin a from the thermophilic green gliding photosynthetic bacterium chloroflexus aurantiacus represents an unusual class of small blue copper proteins. Protein Science, 1999, 8, 947-957.	7.6	29
134	Hypothesis on chlorosome biogenesis in green photosynthetic bacteria. FEBS Letters, 2007, 581, 800-803.	2.8	29
135	Effect of Spectral Density Shapes on the Excitonic Structure and Dynamics of the Fenna–Matthews–Olson Trimer from Chlorobaculum tepidum. Journal of Physical Chemistry A, 2016, 120, 6146-6154.	2.5	29
136	FLUORESCENCE QUANTUM YIELDS AND LIFETIMES FOR BACTERIOCHLOROPHYLL $\langle i \rangle c \langle i \rangle$. Photochemistry and Photobiology, 1988, 47, 759-763.	2.5	28
137	Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum. Photosynthesis Research, 2010, 104, 113-122.	2.9	28
138	Kinetics and energetics of electron transfer in reaction centers of the photosynthetic bacterium Roseiflexus castenholzii. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 262-269.	1.0	28
139	Energy Transfers in the B808–866 Antenna from the Green Bacterium Chloroflexus aurantiacus. Biophysical Journal, 1998, 74, 2069-2075.	0.5	27
140	Purification and Characterization of the B808–866 Light-harvesting Complex from Green Filamentous Bacterium Chloroflexus aurantiacus. Photosynthesis Research, 2005, 86, 155-163.	2.9	27
141	Carbon Flow of Heliobacteria Is Related More to Clostridia than to the Green Sulfur Bacteria. Journal of Biological Chemistry, 2010, 285, 35104-35112.	3.4	27
142	Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum. Photosynthesis Research, 2011, 107, 177-186.	2.9	27
143	Chemical activation of the cyanobacterial orange carotenoid protein. FEBS Letters, 2014, 588, 4561-4565.	2.8	27
144	Structural Analysis of the Homodimeric Reaction Center Complex from the Photosynthetic Green Sulfur Bacterium <i>Chlorobaculum tepidum</i> . Biochemistry, 2014, 53, 4924-4930.	2.5	27

#	Article	IF	Citations
145	Transcriptomic analysis illuminates genes involved in chlorophyll synthesis after nitrogen starvation in Acaryochloris sp. CCMEE 5410. Photosynthesis Research, 2016, 129, 171-182.	2.9	27
146	Electron-transport chains of phototrophically and chemotrophically grown Chloroflexus aurantiacus. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 891, 216-226.	1.0	26
147	Pigment organization in the photosynthetic apparatus of Roseiflexus castenholzii. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1050-1056.	1.0	26
148	Structural model and spectroscopic characteristics of the FMO antenna protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 157-164.	1.0	26
149	Excited state properties of chlorophyll f in organic solvents at ambient and cryogenic temperatures. Photosynthesis Research, 2014, 121, 25-34.	2.9	26
150	Excited State Properties of 3′-Hydroxyechinenone in Solvents and in the Orange Carotenoid Protein from <i>Synechocystis</i> sp. PCC 6803. Journal of Physical Chemistry B, 2014, 118, 6141-6149.	2.6	26
151	Electronâ€capture dissociation and ion mobility mass spectrometry for characterization of the hemoglobin protein assembly. Protein Science, 2015, 24, 1325-1332.	7.6	26
152	Perturbation of bacteriochlorophyll molecules in Fenna–Matthews–Olson protein complexes through mutagenesis of cysteine residues. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1455-1463.	1.0	26
153	Native Mass Spectrometry Analysis of Oligomerization States of Fluorescence Recovery Protein and Orange Carotenoid Protein: Two Proteins Involved in the Cyanobacterial Photoprotection Cycle. Biochemistry, 2017, 56, 160-166.	2.5	26
154	Time-Resolved Fluorescence Measurements of Photosystem II:  The Effect of Quenching by Oxidized Chlorophyll Z. Journal of Physical Chemistry B, 1998, 102, 8320-8326.	2.6	24
155	Photosystem trap energies and spectrally-dependent energy-storage efficiencies in the Chl d-utilizing cyanobacterium, Acaryochloris marina. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 255-265.	1.0	24
156	Photophysical Properties of the Excited States of Bacteriochlorophyll $\langle i \rangle f \langle j \rangle$ in Solvents and in Chlorosomes. Journal of Physical Chemistry B, 2014, 118, 2295-2305.	2.6	24
157	A Molecular Mechanism for Nonphotochemical Quenching in Cyanobacteria. Biochemistry, 2017, 56, 2812-2823.	2.5	24
158	Subcellular pigment distribution is altered under far-red light acclimation in cyanobacteria that contain chlorophyll f. Photosynthesis Research, 2017, 134, 183-192.	2.9	24
159	Structural heterogeneity leads to functional homogeneity in A. marina phycocyanin. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 544-553.	1.0	23
160	Energy transfer in an LH4-like light harvesting complex from the aerobic purple photosynthetic bacterium Roseobacter denitrificans. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 518-528.	1.0	22
161	Comparison of the physical characteristics of chlorosomes from three different phyla of green phototrophic bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1235-1244.	1.0	22
162	Time-resolved tryptophan fluorescence in photosynthetic reaction centers from Rhodobacter sphaeroides. FEBS Letters, 1993, 321, 229-232.	2.8	21

#	Article	IF	CITATIONS
163	The crystal structure of auracyanin A at 1.85Âà resolution: the structures and functions of auracyanins A and B, two almost identical "blue―copper proteins, in the photosynthetic bacterium Chloroflexus aurantiacus. Journal of Biological Inorganic Chemistry, 2009, 14, 329-345.	2.6	21
164	SANS Investigation of the Photosynthetic Machinery of Chloroflexus aurantiacus. Biophysical Journal, 2010, 99, 2398-2407.	0.5	21
165	Temperature and Ionic Strength Effects on the Chlorosome Light-Harvesting Antenna Complex. Langmuir, 2011, 27, 4816-4828.	3.5	21
166	Metalloproteins Diversified: The Auracyanins Are a Family of Cupredoxins That Stretch the Spectral and Redox Limits of Blue Copper Proteins. Biochemistry, 2013, 52, 8267-8275.	2.5	21
167	Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2. Chemical Science, 2018, 9, 3095-3104.	7.4	21
168	Title is missing!. Photosynthesis Research, 1998, 56, 315-328.	2.9	20
169	How Cyanobacteria went green. Science, 2017, 355, 1372-1373.	12.6	20
170	Structure of cyanobacterial phycobilisome core revealed by structural modeling and chemical cross-linking. Science Advances, 2021, 7, .	10.3	20
171	Transient Absorption Spectroscopy of Energy-Transfer and Trapping Processes in the Reaction Center Complex of Chlorobium tepidum. Journal of Physical Chemistry B, 1998, 102, 8190-8195.	2.6	19
172	Characterization of an FMO Variant of <i>Chlorobaculum tepidum </i> Carrying Bacteriochlorophyll <i>a </i> Esterified by Geranylgeraniol. Biochemistry, 2010, 49, 5455-5463.	2.5	19
173	Neutron and light scattering studies of light-harvesting photosynthetic antenna complexes. Photosynthesis Research, 2012, 111, 205-217.	2.9	19
174	A thin-film electrochemical study of the "blue" copper proteins, auracyanin A and auracyanin B, from the photosynthetic bacterium Chloroflexus aurantiacus: the reduction potential as a function of pH. Journal of Biological Inorganic Chemistry, 2003, 8, 306-317.	2.6	18
175	Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum. Photosynthesis Research, 2011, 110, 49-60.	2.9	18
176	Characterization and deposition of various light-harvesting antenna complexes by electrospray atomization. Analytical and Bioanalytical Chemistry, 2012, 404, 2329-2338.	3.7	18
177	Excitation energy transfer and trapping dynamics in the core complex of the filamentous photosynthetic bacterium Roseiflexus castenholzii. Photosynthesis Research, 2012, 111, 149-156.	2.9	18
178	Chemical oxidation of the FMO antenna protein from Chlorobaculum tepidum. Photosynthesis Research, 2013, 116, 11-19.	2.9	18
179	Intensity Dependence of the Excited State Lifetimes and Triplet Conversion Yield in the Fenna–Matthews–Olson Antenna Protein. Journal of Physical Chemistry B, 2014, 118, 2058-2069.	2.6	18
180	Native mass spectrometry and ion mobility characterize the orange carotenoid protein functional domains. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 734-739.	1.0	18

#	Article	IF	Citations
181	It takes two to tango. , 2001, 8, 94-95.		17
182	Anoxygenic Type-I Photosystems and Evolution of Photosynthetic Reaction Centers., 0,, 295-324.		17
183	Purification, characterization and crystallization of menaquinol:fumarate oxidoreductase from the green filamentous photosynthetic bacterium Chloroflexus aurantiacus. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 86-96.	1.0	17
184	Polymer–Chlorosome Nanocomposites Consisting of Non-Native Combinations of Self-Assembling Bacteriochlorophylls. Langmuir, 2017, 33, 6427-6438.	3.5	17
185	Spectroscopic Studies of Carotenoid-to-Bacteriochlorophyll Energy Transfer in LHRC Photosynthetic Complex from <i>Roseiflexus castenholzii</i> 1 Resubmitted to J Phys Chem B Journal of Physical Chemistry B, 2010, 114, 8723-8734.	2.6	16
186	Expression and characterization of the diheme cytochrome c subunit of the cytochrome bc complex in Heliobacterium modesticaldum. Archives of Biochemistry and Biophysics, 2012, 517, 131-137.	3.0	16
187	On destabilization of the Fenna–Matthews–Olson complex of Chlorobaculum tepidum. Photosynthesis Research, 2014, 120, 323-329.	2.9	16
188	The Fate of the Triplet Excitations in the Fenna–Matthews–Olson Complex. Journal of Physical Chemistry B, 2015, 119, 5765-5772.	2.6	16
189	Genome Sequence of Rhodoferax antarcticus ANT.BRT; A Psychrophilic Purple Nonsulfur Bacterium from an Antarctic Microbial Mat. Microorganisms, 2017, 5, 8.	3.6	16
190	Electronic coherence lifetimes of the Fenna–Matthews–Olson complex and light harvesting complex II. Chemical Science, 2019, 10, 10503-10509.	7.4	16
191	SOLVENT INFLUENCES ON THE SINGLET QUENCHING OF CHLOROPHYLL a BY 2, 5-DIMETHYL-p-BENZOQUINONE. Photochemistry and Photobiology, 1984, 39, 301-306.	2.5	15
192	Structural Analysis of Diheme Cytochrome <i>c< i> by Hydrogen–Deuterium Exchange Mass Spectrometry and Homology Modeling. Biochemistry, 2014, 53, 5619-5630.</i>	2.5	15
193	Orange Carotenoid Protein as a Control Element in an Antenna System Based on a DNA Nanostructure. Nano Letters, 2017, 17, 1174-1180.	9.1	15
194	Evidence of functional trimeric chlorophyll a/c-peridinin proteins in the dinoflagellate Symbiodinium. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1904-1912.	1.0	14
195	Modeling of Various Optical Spectra in the Presence of Slow Excitation Energy Transfer in Dimers and Trimers with Weak Interpigment Coupling: FMO as an Example. Journal of Physical Chemistry B, 2014, 118, 2032-2040.	2.6	14
196	Engineered holocytochrome <i>c</i> synthases that biosynthesize new cytochromes <i>c</i> Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2235-2240.	7.1	14
197	Novel insights into the origin and diversification of photosynthesis based on analyses of conserved indels in the core reaction center proteins. Photosynthesis Research, 2017, 131, 159-171.	2.9	14
198	Mapping the excitation energy migration pathways in phycobilisomes from the cyanobacterium Acaryochloris marina. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 286-296.	1.0	14

#	Article	IF	Citations
199	Temperature Dependence of Charge Recombination in Heliobacillus mobilis. Photochemistry and Photobiology, 1996, 64, 32-37.	2.5	13
200	Excitation Dynamics in the Core Antenna in the Photosystem I Reaction Center of the Chlorophylld-Containing Photosynthetic ProkaryoteAcaryochloris marina. Journal of Physical Chemistry B, 2003, 107, 1452-1457.	2.6	13
201	Supramolecular organization of photosynthetic complexes in membranes of Roseiflexus castenholzii. Photosynthesis Research, 2016, 127, 117-130.	2.9	13
202	Excitation energy transfer kinetics and efficiency in phototrophic green sulfur bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1180-1190.	1.0	13
203	Femtosecond Spectroscopy of the Primary Charge Separation in Reaction Centers of <i>Chloroflexus aurantiacus </i> <ii>with Selective Excitation in the Q_Yand Soret Bands. Journal of Physical Chemistry A, 2007, 111, 9367-9373.</ii>	2.5	12
204	Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer. Review of Scientific Instruments, 2018, 89, 033104.	1.3	12
205	Self quenching of chlorosome chlorophylls in water and hexanol-saturated water. Photosynthesis Research, 1996, 47, 207-218.	2.9	11
206	Initial Characterization of the Photosynthetic Apparatus of " Candidatus Chlorothrix halophila,―a Filamentous, Anoxygenic Photoautotroph. Journal of Bacteriology, 2007, 189, 4196-4203.	2.2	11
207	Sol–gel entrapped light harvesting antennas: immobilization and stabilization of chlorosomes for energy harvesting. Journal of Materials Chemistry, 2012, 22, 22582.	6.7	11
208	Ultrafast Spectroscopic Investigation of Energy Transfer in Site-Directed Mutants of the Fenna–Matthews–Olson (FMO) Antenna Complex from ⟨i⟩Chlorobaculum tepidum⟨ i⟩. Journal of Physical Chemistry B, 2017, 121, 4700-4712.	2.6	11
209	Absence of Selection for Quantum Coherence in the Fenna–Matthews–Olson Complex: A Combined Evolutionary and Excitonic Study. ACS Central Science, 2017, 3, 1086-1095.	11.3	11
210	Carotenoid and Bacteriochlorophyll Energy Transfer in the B808â^'866 Complex fromChloroflexusaurantiacusâ€. Journal of Physical Chemistry B, 2004, 108, 10607-10611.	2.6	10
211	Top-Down Mass Spectrometry Analysis of Membrane-Bound Light-Harvesting Complex 2 from <i>Rhodobacter sphaeroides</i> . Biochemistry, 2015, 54, 7261-7271.	2.5	10
212	Carotenoid-to-Bacteriochlorophyll Energy Transfer in the LH1–RC Core Complex of a Bacteriochlorophyll <i>b</i> Containing Purple Photosynthetic Bacterium <i>Blastochloris viridis</i> Journal of Physical Chemistry B, 2016, 120, 5159-5171.	2.6	10
213	Excitonic Energy Landscape of the Y16F Mutant of the <i>Chlorobium tepidum</i> Fenna–Matthews–Olson (FMO) Complex: High Resolution Spectroscopic and Modeling Studies. Journal of Physical Chemistry B, 2018, 122, 3734-3743.	2.6	10
214	Excitation Energy Transfer in Intact CpcL-Phycobilisomes from <i>Synechocystis</i> sp. PCC 6803. Journal of Physical Chemistry B, 2019, 123, 4695-4704.	2.6	10
215	Cryo-EM structures of the air-oxidized and dithionite-reduced photosynthetic alternative complex III from <i>Roseiflexus castenholzii</i>). Science Advances, 2020, 6, eaba2739.	10.3	10
216	Analysis of the Complete Genome of the Alkaliphilic and Phototrophic Firmicute Heliorestis convoluta Strain HHT. Microorganisms, 2020, 8, 313.	3.6	10

#	Article	IF	CITATIONS
217	Functional analysis and expression of the mono-heme containing cytochrome c subunit of alternative complex III in Chloroflexus aurantiacus. Archives of Biochemistry and Biophysics, 2013, 535, 197-204.	3.0	9
218	Site-directed mutagenesis of the highly perturbed copper site of auracyanin D. Archives of Biochemistry and Biophysics, 2014, 564, 237-243.	3.0	9
219	Isotope-Encoded Carboxyl Group Footprinting for Mass Spectrometry-Based Protein Conformational Studies. Journal of the American Society for Mass Spectrometry, 2016, 27, 178-181.	2.8	9
220	Native Mass Spectrometry Characterizes the Photosynthetic Reaction Center Complex from the Purple Bacterium <i>Rhodobacter sphaeroides</i> . Journal of the American Society for Mass Spectrometry, 2017, 28, 87-95.	2.8	9
221	Redox Conditions Affect Ultrafast Exciton Transport in Photosynthetic Pigment–Protein Complexes. Journal of Physical Chemistry Letters, 2018, 9, 89-95.	4.6	9
222	Energy landscape of the intact and destabilized FMO antennas from C. tepidum and the L122Q mutant: Low temperature spectroscopy and modeling study. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 165-173.	1.0	9
223	Farâ€red light promotes biofilm formation in the cyanobacterium <i>Acaryochloris marina</i> Environmental Microbiology, 2018, 20, 535-545.	3.8	9
224	Excitation energy transfer in the far-red absorbing violaxanthin/vaucheriaxanthin chlorophyll a complex from the eustigmatophyte alga FP5. Photosynthesis Research, 2019, 140, 337-354.	2.9	9
225	Cu ⁺ Contributes to the Orange Carotenoid Protein-Related Phycobilisome Fluorescence Quenching and Photoprotection in Cyanobacteria. Biochemistry, 2019, 58, 3109-3115.	2.5	9
226	Structural and functional dynamics of photosynthetic antenna complexes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13751-13752.	7.1	8
227	Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities. Photosynthesis Research, 2018, 137, 389-402.	2.9	8
228	Kinetics of electron transfer in duroquinone-reconstituted reaction centers from photosynthetic bacteria. FEBS Letters, 1982, 147, 115-119.	2.8	7
229	Identification of a Key Step in the Biosynthetic Pathway of Bacteriochlorophyll c and Its Implications for Other Known and Unknown Green Sulfur Bacteria. Journal of Bacteriology, 2004, 186, 5187-5188.	2.2	7
230	Comparing the Temperature Dependence of Photosynthetic Electron Transfer in Chloroflexus aurantiacus and Rhodobactor sphaeroides Reaction Centers. Journal of Physical Chemistry B, 2011, 115, 11230-11238.	2.6	7
231	Supramolecular self-assembly of bacteriochlorophyll c molecules in aerosolized droplets to synthesize biomimetic chlorosomes. Journal of Photochemistry and Photobiology B: Biology, 2018, 185, 161-168.	3.8	7
232	Redox conditions correlated with vibronic coupling modulate quantum beats in photosynthetic pigment–protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2112817118.	7.1	7
233	Purification and characterization of cytochrome c 6 from Acaryochloris marina. Photosynthesis Research, 2009, 102, 43-51.	2.9	6
234	Modulation of fluorescence in Heliobacterium modesticaldum cells. Photosynthesis Research, 2010, 104, 283-292.	2.9	6

#	Article	IF	CITATIONS
235	Using photosystem I as a reporter protein for 13C analysis in a coculture containing cyanobacterium and a heterotrophic bacterium. Analytical Biochemistry, 2015, 477, 86-88.	2.4	6
236	Excited-state properties of the central-cis isomer of the carotenoid peridinin. Archives of Biochemistry and Biophysics, 2018, 649, 29-36.	3.0	6
237	Complete genome of the thermophilic purple sulfur Bacterium Thermochromatium tepidum compared to Allochromatium vinosum and other Chromatiaceae. Photosynthesis Research, 2022, 151, 125-142.	2.9	6
238	Photosynthetic Pigments: Structure and Spectroscopy., 0,, 42-60.		5
239	Reaction Center Complexes. , 0, , 95-123.		5
240	Binding of red form of Orange Carotenoid Protein (OCP) to phycobilisome is not sufficient for quenching. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148155.	1.0	5
241	Revisiting high-resolution crystal structure of Phormidium rubidum phycocyanin. Photosynthesis Research, 2020, 144, 349-360.	2.9	5
242	Rapid one-step purification of the BChl-a containing FMO-protein from the green sulfur bacterium Chlorobium tepidum using a high efficiency immunomatrix. Photosynthesis Research, 2002, 71, 149-154.	2.9	4
243	Primary and Higher Order Structure of the Reaction Center from the Purple Phototrophic Bacterium <i>Blastochloris viridis</i> : A Test for Native Mass Spectrometry. Journal of Proteome Research, 2018, 17, 1615-1623.	3.7	4
244	Photoactivation and relaxation studies on the cyanobacterial orange carotenoid protein in the presence of copper ion. Photosynthesis Research, 2018, 135, 143-147.	2.9	4
245	2007 Awards of the International Society of Photosynthesis Research (ISPR). Photosynthesis Research, 2007, 94, 179-181.	2.9	3
246	Remembering John M. Olson (1929–2017). Photosynthesis Research, 2018, 137, 161-169.	2.9	3
247	The influence of quaternary structure on the stability of Fenna–Matthews–Olson (FMO) antenna complexes. Photosynthesis Research, 2019, 140, 39-49.	2.9	3
248	Martin David Kamen (1913–2002): discoverer of carbon 14, and of new cytochromes in photosynthetic bacteria. Photosynthesis Research, 2021, 149, 265-273.	2.9	3
249	Neutron and X-ray analysis of the Fenna–Matthews–Olson photosynthetic antenna complex from <i>Prosthecochloris aestuarii</i> . Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 171-175.	0.8	3
250	Unique Central Carbon Metabolic Pathways and Novel Enzymes in Phototrophic Bacteria Revealed by Integrative Genomics, 13C-based Metabolomics and Fluxomics. Advanced Topics in Science and Technology in China, 2013, , 339-343.	0.1	2
251	Discovery of Chlorophyll d: Isolation and Characterization of a Far-Red Cyanobacterium from the Original Site of Manning and Strain (1943) at Moss Beach, California. Microorganisms, 2022, 10, 819.	3.6	2
252	Chemiosmotic Coupling and ATP Synthesis. , 0, , 157-170.		1

#	Article	IF	CITATIONS
253	Production and performance of a Photosystem I-based solar cell using nano-columnar TiO < inf > 2 < /inf > . , 2013, , .		1
254	Oligomerization state and pigment binding strength of the peridininâ€Chl <i>a</i> aaeprotein. FEBS Letters, 2015, 589, 2713-2719.	2.8	1
255	On Excitation Energy Transfer within the Baseplate BChl <i>a</i> a\(i\) a="CsmA Complex of <i>Chloroflexus aurantiacus</i> . Journal of Physical Chemistry B, 2019, 123, 9786-9791.	2.6	1
256	Linear Dichroism of the 740NM Absorbing Form of Chlorophyll a. Spectroscopy Letters, 1982, 15, 527-532.	1.0	0
257	Carbon Metabolism. , 0, , 171-203.		0
258	Appendix: Light, Energy and Kinetics. , 0, , 258-305.		0
259	Nano-Biohybrid Light-Harvesting Systems for Solar Energy Applications. Materials Research Society Symposia Proceedings, 2012, 1445, 1.	0.1	0
260	Measurement of solar spectra relating to photosynthesis and solar cells: An inquiry lab for secondary science. Biochemistry and Molecular Biology Education, 2012, 40, 241-245.	1.2	0
261	Biomimetic approach to synthesize sensitizers for hybrid solar cells. , 2013, , .		0
262	Lights, X-Rays, Oxygen!. Cell, 2014, 158, 701-703.	28.9	0
263	Introduction to accompany the special issue on light-harvesting. Photosynthesis Research, 2014, 121, 1-1.	2.9	0
264	The Diversity of Photosynthetic Cytochromes. Advances in Photosynthesis and Respiration, 2016, , 25-50.	1.0	0
265	Coherent wavepackets in the Fenna-Matthews-Olson complex are robust to excitonic-structure perturbations caused by mutagenesis. EPJ Web of Conferences, 2019, 205, 10008.	0.3	0
266	Photosynthetic Electron Transport. , 2018, , 1-7.		0