Lei Kai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7602353/publications.pdf

Version: 2024-02-01

35	964	17 h-index	30
papers	citations		g-index
37	37	37	1273 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers. World Journal of Microbiology and Biotechnology, 2022, 38, 89.	1.7	15
2	Functional Analysis of Aquaporin Water Permeability Using an Escherichia coli-Based Cell-Free Protein Synthesis System. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1000.	2.0	3
3	Co-Translational Insertion of Aquaporins into Liposome for Functional Analysis via an E. coli Based Cell-Free Protein Synthesis System. Cells, 2019, 8, 1325.	1.8	2
4	Cellâ€Free Protein Synthesis and Its Perspectives for Assembling Cells from the Bottomâ€Up. Advanced Biology, 2019, 3, e1800322.	3.0	19
5	Design of Sealable Custom-Shaped Cell Mimicries Based on Self-Assembled Monolayers on CYTOP Polymer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21372-21380.	4.0	8
6	Temperature-sensitive protein expression in protocells. Chemical Communications, 2019, 55, 6421-6424.	2.2	15
7	Aquaporin PIP2;1 affects water transport and root growth in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2019, 139, 152-160.	2.8	51
8	Cell-Free Protein Synthesis: Chassis toward the Minimal Cell. Cells, 2019, 8, 315.	1.8	19
9	Perception, transduction, and integration of nitrogen and phosphorus nutritional signals in the transcriptional regulatory network in plants. Journal of Experimental Botany, 2019, 70, 3709-3717.	2.4	34
10	Overexpression of rice aquaporin <i>OsPIP1;2</i> improves yield by enhancing mesophyll CO2 conductance and phloem sucrose transport. Journal of Experimental Botany, 2019, 70, 671-681.	2.4	60
11	Light-Induced Printing of Protein Structures on Membranes in Vitro. Nano Letters, 2018, 18, 7133-7140.	4.5	15
12	Plant Aquaporins and CO2. Signaling and Communication in Plants, 2017, , 255-265.	0.5	8
13	Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks. New Biotechnology, 2017, 39, 199-205.	2.4	50
14	Advances in Biotechnology for Sustainable Development. BioMed Research International, 2016, 2016, 1-2.	0.9	1
15	The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Science, 2015, 234, 14-21.	1.7	103
16	Co-translational Stabilization of Insoluble Proteins in Cell-Free Expression Systems. Methods in Molecular Biology, 2015, 1258, 125-143.	0.4	12
17	Aquaporins and membrane diffusion of CO2 in living organisms. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1592-1595.	1.1	101
18	High-Level Cell-Free Production of Membrane Proteins with Nanodiscs. Methods in Molecular Biology, 2014, 1118, 109-130.	0.4	16

#	Article	IF	Citations
19	Enhanced functional expression of aquaporin Z via fusion of in situ cleavable leader peptides in Escherichia coli cell-free system. Enzyme and Microbial Technology, 2014, 55, 26-30.	1.6	16
20	A refined model of water and CO2 membrane diffusion: Effects and contribution of sterols and proteins. Scientific Reports, 2014, 4, 6665.	1.6	33
21	Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers. Molecular Membrane Biology, 2013, 30, 75-89.	2.0	54
22	Artificial Environments for the Co-Translational Stabilization of Cell-Free Expressed Proteins. PLoS ONE, 2013, 8, e56637.	1.1	29
23	Functional Characterization of a Novel Aquaporin from Dictyostelium discoideum Amoebae Implies a Unique Gating Mechanism. Journal of Biological Chemistry, 2012, 287, 7487-7494.	1.6	27
24	Systems for the Cell-Free Synthesis of Proteins. Methods in Molecular Biology, 2012, 800, 201-225.	0.4	37
25	Construction of an efficient <i>Escherichia coli</i> cellâ€free system for <i>in vitro</i> expression of several kinds of proteins. Engineering in Life Sciences, 2010, 10, 333-338.	2.0	8
26	Cell-free expression and stable isotope labelling strategies for membrane proteins. Journal of Biomolecular NMR, 2010, 46, 33-43.	1.6	81
27	Preparative Scale Production of Functional Mouse Aquaporin 4 Using Different Cell-Free Expression Modes. PLoS ONE, 2010, 5, e12972.	1.1	41
28	Purification and characterization of a cis-epoxysuccinic acid hydrolase from Bordetella sp. strain 1–3. Protein Expression and Purification, 2010, 69, 16-20.	0.6	6
29	Purification and characterization of a thermostable uricase from Microbacterium sp. strain ZZJ4-1. World Journal of Microbiology and Biotechnology, 2008, 24, 401-406.	1.7	19
30	Optimization of culture conditions for production of cis-epoxysuccinic acid hydrolase using response surface methodology. Bioresource Technology, 2008, 99, 5391-5396.	4.8	36
31	Isolation of a homocysteine \hat{I}^3 -lyase-producing bacterium and study of its enzyme production conditions. Journal of Applied Microbiology, 2008, 104, 1042-1050.	1.4	1
32	Efficient Expression of Membrane-Bound Water Channel Protein (Aquaporin Z) in Escherichia coli. Protein and Peptide Letters, 2008, 15, 687-691.	0.4	16
33	Isolation and characterization of a new bacterium capable of biotransformingcis-epoxysuccinic acid to $d(\tilde{A}^{\hat{A}}\hat{A}')$ -tartaric acid. FEMS Microbiology Letters, 2007, 267, 214-220.	0.7	12
34	Study on the creatinase from Paracoccus sp. strain WB1. Process Biochemistry, 2006, 41, 2072-2077.	1.8	8
35	Expression and characterization of a thermostable sarcosine oxidase (SOX) from Bacillus sp. in Escherichia coli. Applied Microbiology and Biotechnology, 2006, 73, 559-566.	1.7	8