Yagya N Regmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/760218/publications.pdf Version: 2024-02-01

		623574	794469
22	1,824	14	19
papers	citations	h-index	g-index
23	23	23	3527
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Performance and Durability of Proton Exchange Membrane Vapor-Fed Unitized Regenerative Fuel Cells. Journal of the Electrochemical Society, 2022, 169, 054514.	1.3	6
2	The Role of Water in Vapor-fed Proton-Exchange-Membrane Electrolysis. Journal of the Electrochemical Society, 2020, 167, 104508.	1.3	34
3	Hierarchical electrode design of highly efficient and stable unitized regenerative fuel cells (URFCs) for long-term energy storage. Energy and Environmental Science, 2020, 13, 4872-4881.	15.6	43
4	Supported Oxygen Evolution Catalysts by Design: Toward Lower Precious Metal Loading and Improved Conductivity in Proton Exchange Membrane Water Electrolyzers. ACS Catalysis, 2020, 10, 13125-13135.	5.5	33
5	A low temperature unitized regenerative fuel cell realizing 60% round trip efficiency and 10 000 cycles of durability for energy storage applications. Energy and Environmental Science, 2020, 13, 2096-2105.	15.6	57
6	Transition Metal Arsenide Catalysts for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 24007-24012.	1.5	18
7	Vapor-Phase Stabilization of Biomass Pyrolysis Vapors Using Mixed-Metal Oxide Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 7386-7394.	3.2	15
8	Unitized Regenerative Fuel Cells in Constant Gas and Constant Polarity Modes for Performance Optimization. ECS Meeting Abstracts, 2019, , .	0.0	0
9	Experimental Analysis of Operating Conditions of Proton Exchange Membrane Based Unitized Regenerative Fuel Cells for Efficient and Economic Energy Conversion. ECS Meeting Abstracts, 2019, , .	0.0	0
10	Corrosion-Resistant Precious Metal Coated Oxide Nanoparticles As Supports for Iridium-Based Oxygen Evolution Reaction Catalysts in Proton Exchange Membrane Electrolyzers. ECS Meeting Abstracts, 2019, , .	0.0	0
11	Catalytic transfer hydrogenolysis of organosolv lignin using B-containing FeNi alloyed catalysts. Catalysis Today, 2018, 302, 190-195.	2.2	49
12	A Facile Synthesis of Highly Stable Modified Carbon Nanotubes as Efficient Oxygen Reduction Reaction Catalysts. ChemistrySelect, 2017, 2, 1932-1938.	0.7	0
13	Electrocatalytic Activity and Stability Enhancement through Preferential Deposition of Phosphide on Carbide. ChemCatChem, 2017, 9, 1054-1061.	1.8	11
14	Environmentally Friendly Process for Recovery of Wood Preservative from Used Copper Naphthenate-Treated Railroad Ties. ACS Sustainable Chemistry and Engineering, 2017, 5, 10806-10814.	3.2	1
15	Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability. Chemistry of Materials, 2017, 29, 9369-9377.	3.2	22
16	Scalable and Tunable Carbide–Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass. ACS Sustainable Chemistry and Engineering, 2017, 5, 7751-7758.	3.2	5
17	The recent progress and future of oxygen reduction reaction catalysis: A review. Renewable and Sustainable Energy Reviews, 2017, 69, 401-414.	8.2	300
18	Nanocrystalline Mo ₂ C as a Bifunctional Water Splitting Electrocatalyst. ChemCatChem, 2015, 7, 3911-3915.	1.8	53

ΥΑGYA Ν REGMI

#	Article	IF	CITATIONS
19	Carbides of group IVA, VA and VIA transition metals as alternative HER and ORR catalysts and support materials. Journal of Materials Chemistry A, 2015, 3, 10085-10091.	5.2	153
20	Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 6407-6410.	7.2	685
21	General Synthesis Method for Bimetallic Carbides of Group VIIIA First Row Transition Metals with Molybdenum and Tungsten. Chemistry of Materials, 2014, 26, 2609-2616.	3.2	40
22	The Finkelstein Reaction: Quantitative Reaction Kinetics of an SN2 Reaction Using Nonaqueous Conductivity. Journal of Chemical Education, 2006, 83, 1344.	1.1	24