Robert Quintana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7602037/publications.pdf

Version: 2024-02-01

28 papers

805 citations

623188 14 h-index 28 g-index

28 all docs 28 docs citations

times ranked

28

1262 citing authors

#	Article	IF	CITATIONS
1	Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. Journal of Colloid and Interface Science, 2015, 452, 43-53.	5.0	125
2	Enhanced Stability of Low Fouling Zwitterionic Polymer Brushes in Seawater with Diblock Architecture. Langmuir, 2013, 29, 10859-10867.	1.6	97
3	Biomimicking Micropatterned Surfaces and Their Effect on Marine Biofouling. Langmuir, 2014, 30, 9165-9175.	1.6	94
4	Phloretic acid as an alternative to the phenolation of aliphatic hydroxyls for the elaboration of polybenzoxazine. Green Chemistry, 2017, 19, 5065-5073.	4.6	64
5	Sulfobetaine-based polymer brushes in marine environment: Is there an effect of the polymerizable group on the antifouling performance?. Colloids and Surfaces B: Biointerfaces, 2014, 120, 118-124.	2.5	59
6	Polyterephthalates made from Ethylene glycol, 1,4â€cyclohexanedimethanol, and isosorbide. Journal of Polymer Science Part A, 2011, 49, 2252-2260.	2.5	55
7	Enhancement of cellulose acetate degradation under accelerated weathering by plasticization with eco-friendly plasticizers. Polymer Degradation and Stability, 2013, 98, 1556-1562.	2.7	50
8	Recent advances in (reactive) melt processing of cellulose acetate and related biodegradable bio-compositions. Polymer Chemistry, 2012, 3, 591-595.	1.9	41
9	Reactive compatibilization of poly(<scp> </scp> â€lactide)/poly(butylene succinate) blends through polyester maleation: from materials to properties. Polymer International, 2014, 63, 1724-1731.	1.6	26
10	Brush Swelling and Attachment Strength of Barnacle Adhesion Protein on Zwitterionic Polymer Films as a Function of Macromolecular Structure. Langmuir, 2019, 35, 8085-8094.	1.6	23
11	Grafted d/l-lactide to cellulose acetate by reactive melt processing: Its role as CA/PLA blend compatibilizer. European Polymer Journal, 2014, 57, 30-36.	2.6	22
12	Poly(ethylene terephthalate) terpolyesters containing 1,4-cyclohexanedimethanol and isosorbide. High Performance Polymers, 2012, 24, 24-30.	0.8	18
13	Compatibilization of co-plasticized cellulose acetate/water soluble polymers blends by reactive extrusion. Polymer Degradation and Stability, 2016, 126, 31-38.	2.7	18
14	Atmospheric Plasma Deposition of Methacrylate Layers Containing Catechol/Quinone Groups: An Alternative to Polydopamine Bioconjugation for Biomedical Applications. Advanced Healthcare Materials, 2018, 7, e1701059.	3.9	17
15	Anti-biofouling activity of Ranaspumin-2 bio-surfactant immobilized on catechol-functional PMMA thin layers prepared by atmospheric plasma deposition. Colloids and Surfaces B: Biointerfaces, 2019, 178, 120-128.	2.5	14
16	Poly(ethylene terephthalateâ€ <i>co</i> â€isophthalate) copolyesters obtained from ethylene terephthalate and isophthalate oligomers. Journal of Applied Polymer Science, 2010, 115, 1823-1830.	1.3	11
17	Poly(ethylene isophthalate)s: effect of the tert-butyl substituent on structure and properties. Polymer, 2004, 45, 5005-5012.	1.8	9
18	Poly(butylene terephthalate-co-5-tert-butyl isophthalate) copolyesters: Synthesis, characterization, and properties. Journal of Polymer Science Part A, 2005, 43, 92-100.	2.5	9

#	Article	IF	CITATIONS
19	Rheological Features and Flowâ€Induced Crystallization of Branched Poly[ethyleneâ€∢i>coàâ€(1,4â€cyclohexanedimethylene terephthalate)] Copolyesters. Macromolecular Materials and Engineering, 2008, 293, 836-846.	1.7	9
20	Deposition of zwitterionic polymer brushes in a dense gas medium. Journal of Colloid and Interface Science, 2015, 448, 156-162.	5.0	8
21	Insights on the Atmospheric-Pressure Plasma-Induced Free-Radical Polymerization of Allyl Ether Cyclic Carbonate Liquid Layers. Polymers, 2021, 13, 2856.	2.0	7
22	Molecular dynamics of poly(butylene tert-butyl isophthalate) and its copolymers with poly(butylene) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
23	Viscoelastic Properties and Sulfur Distribution at the Nanoscale in Binary Elastomeric Blends: Toward Phase-Specific Cross-Link Density Estimations. ACS Applied Polymer Materials, 2021, 3, 3287-3297.	2.0	6
24	Inkjetâ€Printed Piezoelectric Thin Films for Transparent Haptics. Advanced Materials Technologies, 2022, 7, .	3.0	5
25	Effect of crosslinker on the wettability and mechanical properties of hydrophobic coatings deposited via atmospheric pressure plasma. Plasma Processes and Polymers, 2022, 19, .	1.6	5
26	Controlled coâ€immobilization of biomolecules on quinoneâ€bearing plasma polymer films for multifunctional biomaterial surfaces. Plasma Processes and Polymers, 2020, 17, 2000090.	1.6	4
27	Atmospheric pressure plasma liquid assisted deposition of polydopamine/acrylate copolymer on zirconia (Y-TZP) ceramics: a biocompatible and adherent nanofilm. RSC Advances, 2021, 11, 17360-17368.	1.7	2
28	Compact test apparatus for evaluation of flow erosion of marine coatings. Review of Scientific Instruments, 2015, 86, 105115.	0.6	1