Daniel Grenier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7601743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of the Activities of Matrix Metalloproteinases 2, 8, and 9 by Chlorhexidine. Vaccine Journal, 1999, 6, 437-439.	2.6	395
2	Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent <i>Streptococcus suis</i> . Future Microbiology, 2012, 7, 259-279.	1.0	366
3	The oral cavity as a reservoir of bacterial pathogens for focal infections. Microbes and Infection, 2000, 2, 897-906.	1.0	191
4	In Vitro Models of Tissue Penetration and Destruction by Porphyromonas gingivalis. Infection and Immunity, 2004, 72, 4689-4698.	1.0	129
5	Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria. Industrial Crops and Products, 2015, 78, 148-153.	2.5	129
6	Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary Research, 2017, 48, 22.	1.1	120
7	Effects of a high-molecular-weight cranberry fraction on growth, biofilm formation and adherence of Porphyromonas gingivalis. Journal of Antimicrobial Chemotherapy, 2006, 58, 439-443.	1.3	116
8	Fusobacterium nucleatum Increases Collagenase 3 Production and Migration of Epithelial Cells. Infection and Immunity, 2005, 73, 1171-1179.	1.0	110
9	Initial steps of the pathogenesis of the infection caused by <i>Streptococcus suis</i> : fighting against nonspecific defenses. FEBS Letters, 2016, 590, 3772-3799.	1.3	102
10	Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses, 2011, 54, e801-e806.	1.8	101
11	Protective Effects of Grape Seed Proanthocyanidins Against Oxidative Stress Induced by Lipopolysaccharides of Periodontopathogens. Journal of Periodontology, 2006, 77, 1371-1379.	1.7	100
12	Further studies on the degradation of immunoglobulins by black-pigmented Bacteroides. Oral Microbiology and Immunology, 1989, 4, 12-18.	2.8	96
13	Loss of lipopolysaccharide receptor CD14 from the surface of human macrophage-like cells mediated by Porphyromonas gingivalis outer membrane vesicles. Microbial Pathogenesis, 2004, 36, 319-325.	1.3	94
14	Cranberry Proanthocyanidins: Natural Weapons against Periodontal Diseases. Journal of Agricultural and Food Chemistry, 2012, 60, 5728-5735.	2.4	85
15	Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Scientific Reports, 2017, 7, 44815.	1.6	84
16	Cranberry components inhibit interleukin-6, interleukin-8, and prostaglandin E2production by lipopolysaccharide-activated gingival fibroblasts. European Journal of Oral Sciences, 2007, 115, 64-70.	0.7	80
17	Iron-Chelating Activity of Tetracyclines and Its Impact on the Susceptibility of Actinobacillus actinomycetemcomitans to These Antibiotics. Antimicrobial Agents and Chemotherapy, 2000, 44, 763-766.	1.4	77
18	Inflammatory responses of a macrophage/epithelial cell co-culture model to mono and mixed infections with Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. Microbes and Infection, 2006, 8, 27-35.	1.0	75

#	Article	IF	CITATIONS
19	Characterization of Streptococcus suis isolates recovered between 2008 and 2011 from diseased pigs in Québec, Canada. Veterinary Microbiology, 2013, 162, 819-825.	0.8	75
20	Effect of Inactivation of the Arg- and/or Lys-Gingipain Gene on Selected Virulence and Physiological Properties of Porphyromonas gingivalis. Infection and Immunity, 2003, 71, 4742-4748.	1.0	72
21	Regulatory Mechanisms of the LuxS/AI-2 System and Bacterial Resistance. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	72
22	Degradation of host protease inhibitors and activation of plasminogen by proteolytic enzymes from Porphyromonas gingivalis and Treponema denticola. Microbiology (United Kingdom), 1996, 142, 955-961.	0.7	70
23	Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Archives of Oral Biology, 2016, 65, 35-43.	0.8	68
24	Anti- <i>Porphyromonas gingivalis</i> and Anti-Inflammatory Activities of A-Type Cranberry Proanthocyanidins. Antimicrobial Agents and Chemotherapy, 2010, 54, 1778-1784.	1.4	67
25	Proteases of Porphyromonas gingivalis as Important Virulence Factors in Periodontal Disease and Potential Targets for Plant-Derived Compounds: A Review Article. Current Drug Targets, 2011, 12, 322-331.	1.0	65
26	Role of Gingipains in Growth of Porphyromonas gingivalis in the Presence of Human Serum Albumin. Infection and Immunity, 2001, 69, 5166-5172.	1.0	64
27	Inhibition of periodontopathogen-derived proteolytic enzymes by a high-molecular-weight fraction isolated from cranberry. Journal of Antimicrobial Chemotherapy, 2006, 57, 685-690.	1.3	63
28	Fibrinogen Induces Biofilm Formation by <i>Streptococcus suis</i> and Enhances Its Antibiotic Resistance. Applied and Environmental Microbiology, 2008, 74, 4969-4972.	1.4	61
29	Characteristics of hemolytic and hemagglutinating activities of <i>Treponema denticola</i> . Oral Microbiology and Immunology, 1991, 6, 246-249.	2.8	60
30	Inhibition of Proteolytic, Serpinolytic, and Progelatinase-B Activation Activities of Periodontopathogens by Doxycycline and the Non-Antimicrobial Chemically Modified Tetracycline Derivatives. Journal of Periodontology, 2002, 73, 79-85.	1.7	60
31	Absence of αvβ6 Integrin Is Linked to Initiation and Progression of Periodontal Disease. American Journal of Pathology, 2008, 172, 1271-1286.	1.9	60
32	Detection of herpetic viruses in gingival crevicular fluid of patients suffering from periodontal diseases: prevalence and effect of treatment. Oral Microbiology and Immunology, 2009, 24, 506-509.	2.8	60
33	Doxycycline Reduces Lipopolysaccharideâ€Induced Inflammatory Mediator Secretion in Macrophage and Ex Vivo Human Whole Blood Models. Journal of Periodontology, 2008, 79, 1762-1768.	1.7	58
34	Synergistic Anti-Inflammatory Activity of the Antimicrobial Peptides Human Beta-Defensin-3 (hBD-3) and Cathelicidin (LL-37) in a Three-Dimensional Co-Culture Model of Gingival Epithelial Cells and Fibroblasts. PLoS ONE, 2014, 9, e106766.	1.1	58
35	Oral Microbial Heat-shock Proteins and Their Potential Contributions to Infections. Critical Reviews in Oral Biology and Medicine, 2003, 14, 399-412.	4.4	57
36	Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells. BMC Complementary and Alternative Medicine, 2012, 12, 6.	3.7	57

#	Article	IF	CITATIONS
37	Antibacterial and anti-inflammatory activities of cardamom (Elettaria cardamomum) extracts: Potential therapeutic benefits for periodontal infections. Anaerobe, 2020, 61, 102089.	1.0	56
38	Isoflavonoids and Coumarins from <i>Glycyrrhiza uralensis</i> : Antibacterial Activity against Oral Pathogens and Conversion of Isoflavans into Isoflavan-Quinones during Purification. Journal of Natural Products, 2011, 74, 2514-2519.	1.5	55
39	Antimicrobial activity of nisin against the swine pathogen Streptococcus suis and its synergistic interaction with antibiotics. Peptides, 2013, 50, 19-23.	1.2	55
40	Modulation of cytokine production by Porphyromonas gingivalis in a macrophage and epithelial cell co-culture model. Microbes and Infection, 2005, 7, 448-456.	1.0	54
41	Detection of Streptococcus suis in Bioaerosols of Swine Confinement Buildings. Applied and Environmental Microbiology, 2014, 80, 3296-3304.	1.4	54
42	Subinhibitory Concentrations of Triclosan Promote Streptococcus mutans Biofilm Formation and Adherence to Oral Epithelial Cells. PLoS ONE, 2014, 9, e89059.	1.1	52
43	The collagenase activity ofPorphyromonas gingivalisis due to Arg-gingipain. FEMS Microbiology Letters, 2003, 221, 181-185.	0.7	51
44	Characterisation of biofilm formation by a Streptococcus suis meningitis isolate. Veterinary Journal, 2009, 179, 292-295.	0.6	51
45	Tetracyclines and Chemically Modified Tetracycline-3 (CMT-3) Modulate Cytokine Secretion by Lipopolysaccharide-Stimulated Whole Blood. Inflammation, 2009, 32, 130-137.	1.7	50
46	Wild Blueberry (<i>Vaccinium angustifolium</i> Ait.) Polyphenols Target <i>Fusobacterium nucleatum</i> and the Host Inflammatory Response: Potential Innovative Molecules for Treating Periodontal Diseases. Journal of Agricultural and Food Chemistry, 2015, 63, 6999-7008.	2.4	50
47	The anthraquinone rhein exhibits synergistic antibacterial activity in association with metronidazole or natural compounds and attenuates virulence gene expression in Porphyromonas gingivalis. Archives of Oral Biology, 2015, 60, 342-346.	0.8	50
48	The cell envelope subtilisin-like proteinase is a virulence determinant for Streptococcus suis. BMC Microbiology, 2010, 10, 42.	1.3	49
49	Isolation, Characterization and Biological Properties of Membrane Vesicles Produced by the Swine Pathogen Streptococcus suis. PLoS ONE, 2015, 10, e0130528.	1.1	49
50	Regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases byPorphyromonas gingivalis in an engineered human oral mucosa model. Journal of Cellular Physiology, 2007, 211, 56-62.	2.0	48
51	Actinobacillus actinomycetemcomitans lipopolysaccharide regulates matrix metalloproteinase, tissue inhibitors of matrix metalloproteinase, and plasminogen activator production by human gingival fibroblasts: A potential role in connective tissue destructio. Journal of Cellular Physiology, 2007, 212, 189-194.	2.0	47
52	A Licorice Extract Reduces Lipopolysaccharideâ€Induced Proinflammatory Cytokine Secretion by Macrophages and Whole Blood. Journal of Periodontology, 2008, 79, 1752-1761.	1.7	47
53	Modulation of Matrix Metalloproteinase and Cytokine Production by Licorice Isolates Licoricidin and Licorisoflavan A: Potential Therapeutic Approach for Periodontitis. Journal of Periodontology, 2011, 82, 122-128.	1.7	47
54	Bacterial Heat Shock Protein-60 Increases Epithelial Cell Proliferation through the ERK1/2 MAP Kinases. Experimental Cell Research, 2001, 266, 11-20.	1.2	45

#	Article	IF	CITATIONS
55	Porphyromonas gingivalis-induced inflammatory mediator profile in an ex vivo human whole blood model. Clinical and Experimental Immunology, 2006, 143, 50-57.	1.1	45
56	Localization of heat shock proteins in clinicalActinobacillus actinomycetemcomitansstrains and their effects on epithelial cell proliferation. FEMS Microbiology Letters, 2000, 182, 231-235.	0.7	44
57	Acquisition of Host Plasmin Activity by the Swine Pathogen Streptococcus suis Serotype 2. Infection and Immunity, 2004, 72, 606-610.	1.0	44
58	Antibacterial, Antiadherence, Antiprotease, and Anti-Inflammatory Activities of Various Tea Extracts: Potential Benefits for Periodontal Diseases. Journal of Medicinal Food, 2013, 16, 428-436.	0.8	43
59	Response of human macrophage-like cells to stimulation by Fusobacterium nucleatum ssp. nucleatum lipopolysaccharide. Oral Microbiology and Immunology, 2006, 21, 190-196.	2.8	42
60	Black Tea Extract and Its Theaflavin Derivatives Inhibit the Growth of Periodontopathogens and Modulate Interleukin-8 and β-Defensin Secretion in Oral Epithelial Cells. PLoS ONE, 2015, 10, e0143158.	1.1	42
61	Identification and characterization of four proteases produced byStreptococcus suis. FEMS Microbiology Letters, 2003, 220, 113-119.	0.7	40
62	Peptostreptococcus micros cell wall elicits a pro-inflammatory response in human macrophages. Journal of Endotoxin Research, 2007, 13, 219-226.	2.5	40
63	<i>Bactemides gingivalis</i> vesicles mediate attachment of streptococci to serumâ€coated hydroxyapatite. Oral Microbiology and Immunology, 1989, 4, 199-203.	2.8	39
64	Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies. Applied Microbiology and Biotechnology, 2018, 102, 9121-9129.	1.7	39
65	Tea polyphenols protect gingival keratinocytes against TNF-α-induced tight junction barrier dysfunction and attenuate the inflammatory response of monocytes/macrophages. Cytokine, 2019, 115, 64-75.	1.4	39
66	Purification and characterization of the subtilisin-like protease of Streptococcus suis that contributes to its virulence. Veterinary Microbiology, 2011, 148, 333-340.	0.8	38
67	Grape Seed Extract Suppresses Lipopolysaccharideâ€Induced Matrix Metalloproteinase (MMP) Secretion by Macrophages and Inhibits Human MMPâ€1 and â^'9 Activities. Journal of Periodontology, 2009, 80, 1875-1882.	1.7	37
68	Comparative Evaluation of Two Structurally Related Flavonoids, Isoliquiritigenin and Liquiritigenin, for Their Oral Infection Therapeutic Potential. Journal of Natural Products, 2011, 74, 1862-1867.	1.5	36
69	Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Phytomedicine, 2011, 18, 380-383.	2.3	36
70	Green tea extract and its major constituent, epigallocatechinâ€3â€gallate, induce epithelial betaâ€defensin secretion and prevent betaâ€defensin degradation by <i><scp>P</scp>orphyromonas gingivalis</i> . Journal of Periodontal Research, 2014, 49, 615-623.	1.4	36
71	Tea polyphenols inhibit the activation of NF-κB and the secretion of cytokines and matrix metalloproteinases by macrophages stimulated with Fusobacterium nucleatum. Scientific Reports, 2016, 6, 34520.	1.6	36
72	Green tea extract and its major constituent epigallocatechin-3-gallate inhibit growth and halitosis-related properties of Solobacterium moorei. BMC Complementary and Alternative Medicine, 2015, 15, 48.	3.7	35

#	Article	IF	CITATIONS
73	Dual Action of Myricetin on Porphyromonas gingivalis and the Inflammatory Response of Host Cells: A Promising Therapeutic Molecule for Periodontal Diseases. PLoS ONE, 2015, 10, e0131758.	1.1	35
74	Further evidence for a possible role of trypsin-like activity in the adherence of <i>Porphyromonas gingivalis</i> . Canadian Journal of Microbiology, 1992, 38, 1189-1192.	0.8	34
75	Cleavage of Human Transferrin by Porphyromonas gingivalis Gingipains Promotes Growth and Formation of Hydroxyl Radicals. Infection and Immunity, 2004, 72, 4351-4356.	1.0	34
76	Cell surface characteristics of nontypeable isolates of Streptococcus suis. FEMS Microbiology Letters, 2010, 311, 160-166.	0.7	34
77	Pyrano-isoflavans from <i>Glycyrrhiza uralensis</i> with Antibacterial Activity against <i>Streptococcus mutans</i> and <i>Porphyromonas gingivalis</i> . Journal of Natural Products, 2014, 77, 521-526.	1.5	34
78	The Capacity of Porphyromonas gingivalis to Multiply Under Iron-limiting Conditions Correlates with its Pathogenicity in an Animal Model. Journal of Dental Research, 2001, 80, 1678-1682.	2.5	33
79	Characterization of volatile sulfur compound production by Solobacterium moorei. Archives of Oral Biology, 2012, 57, 1639-1643.	0.8	33
80	Effects of hydrogen peroxide on growth and selected properties ofPorphyromonas gingivalis. FEMS Microbiology Letters, 1999, 174, 347-353.	0.7	32
81	Anthocyanin-Rich Black Currant Extract and Cyanidin-3- <i>O</i> -Glucoside Have Cytoprotective and Anti-Inflammatory Properties. Journal of Medicinal Food, 2012, 15, 1045-1050.	0.8	32
82	Green tea polyphenol epigallocatechin-3-gallate and cranberry proanthocyanidins act in synergy with cathelicidin (LL-37) to reduce the LPS-induced inflammatory response in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. Archives of Oral Biology, 2015, 60, 845-853	0.8	32
83	Regulation of matrix metalloproteinase secretion by green tea catechins in a three-dimensional co-culture model of macrophages and gingival fibroblasts. Archives of Oral Biology, 2017, 75, 89-99.	0.8	32
84	A-Type Cranberry Proanthocyanidins Inhibit the RANKL-Dependent Differentiation and Function of Human Osteoclasts. Molecules, 2011, 16, 2365-2374.	1.7	31
85	The SspA subtilisin-like protease of Streptococcus suis triggers a pro-inflammatory response in macrophages through a non-proteolytic mechanism. BMC Microbiology, 2011, 11, 47.	1.3	31
86	Green tea polyphenols enhance gingival keratinocyte integrity and protect against invasion by Porphyromonas gingivalis. Pathogens and Disease, 2018, 76, .	0.8	31
87	Dual action of highbush blueberry proanthocyanidins on Aggregatibacter actinomycetemcomitans and the host inflammatory response. BMC Complementary and Alternative Medicine, 2018, 18, 10.	3.7	30
88	The plant coumarins auraptene and lacinartin as potential multifunctional therapeutic agents for treating periodontal disease. BMC Complementary and Alternative Medicine, 2012, 12, 80.	3.7	29
89	Effect of chlorhexidine on the adherence properties of Porphyromonas gingivalis. Journal of Clinical Periodontology, 1996, 23, 140-142.	2.3	28
90	Effects of Japanese traditional herbal medicines (Kampo) on growth and virulence properties of Porphyromonas gingivalisand viability of oral epithelial cells. Pharmaceutical Biology, 2013, 51, 1538-1544.	1.3	28

#	Article	IF	CITATIONS
91	Inactivation of tissue inhibitor of metalloproteinases-1 (TIMP-1) byPorphyromonas gingivalis. FEMS Microbiology Letters, 2001, 203, 161-164.	0.7	26
92	Upregulation of prostaglandin E2 and matrix metalloproteinase 9 production by human macrophage-like cells: Synergistic effect of capsular material and cell wall from Streptococcus suis. Microbial Pathogenesis, 2006, 40, 29-34.	1.3	26
93	<i>Treponema denticola</i> lipooligosaccharide activates gingival fibroblasts and upregulates inflammatory mediator production. Journal of Cellular Physiology, 2008, 216, 727-731.	2.0	26
94	Porphyromonas gingivalis Gingipains Trigger a Proinflammatory Response in Human Monocyte-derived Macrophages Through the p38î± Mitogen-activated Protein Kinase Signal Transduction Pathway. Toxins, 2010, 2, 341-352.	1.5	26
95	Latest developments on Streptococcus suis: an emerging zoonotic pathogen: part 2. Future Microbiology, 2014, 9, 587-591.	1.0	26
96	Synthesis and evaluation of antibacterial and anti-inflammatory properties of naturally occurring coumarins. Phytochemistry Letters, 2015, 13, 399-405.	0.6	26
97	Determination of the effects of cinnamon bark fractions on Candida albicans and oral epithelial cells. BMC Complementary and Alternative Medicine, 2019, 19, 303.	3.7	26
98	Cytotoxic effects of culture supernatants of oral bacteria and various organic acids on Vero cells. Canadian Journal of Microbiology, 1985, 31, 302-304.	0.8	25
99	Reduction of bacterial volatile sulfur compound production by licoricidin and licorisoflavan A from licorice. Journal of Breath Research, 2012, 6, 016006.	1.5	25
100	Paeoniflorin reduce <i>luxS</i> /AI-2 system-controlled biofilm formation and virulence in <i>Streptococcus suis</i> . Virulence, 2021, 12, 3062-3073.	1.8	25
101	Suicin 3908, a New Lantibiotic Produced by a Strain of Streptococcus suis Serotype 2 Isolated from a Healthy Carrier Pig. PLoS ONE, 2015, 10, e0117245.	1.1	24
102	In vitro antibacterial activity of plant essential oils against Staphylococcus hyicus and Staphylococcus aureus, the causative agents of exudative epidermitis in pigs. Archives of Microbiology, 2018, 200, 1001-1007.	1.0	24
103	Porphyromonas gingivalis lipopolysaccharide induces shedding of syndecan-1 expressed by gingival epithelial cells. Journal of Cellular Physiology, 2005, 204, 178-183.	2.0	23
104	Interaction between Actinobacillus actinomycetemcomitans lipopolysaccharides and human hemoglobin. FEMS Microbiology Letters, 2006, 151, 77-81.	0.7	23
105	Porcine brain microvascular endothelial cell-derived interleukin-8 is first induced and then degraded by Streptococcus suis. Microbial Pathogenesis, 2009, 46, 135-143.	1.3	23
106	Transcriptional approach to study porcine tracheal epithelial cells individually or dually infected with swine influenza virus and Streptococcus suis. BMC Veterinary Research, 2014, 10, 86.	0.7	23
107	Recruitment of Factor H to the Streptococcus suis Cell Surface is Multifactorial. Pathogens, 2016, 5, 47.	1.2	23
108	Effect of cinnamon (Cinnamomum verum) bark essential oil on the halitosis-associated bacterium Solobacterium moorei and in vitro cytotoxicity. Archives of Oral Biology, 2017, 83, 97-104.	0.8	23

#	Article	IF	CITATIONS
109	Pleiotropic effects of polysaccharide capsule loss on selected biological properties of Streptococcus suis. Canadian Journal of Veterinary Research, 2010, 74, 65-70.	0.2	23
110	Cytoprotective effect of Proanthocyanidinâ€rich cranberry fraction against bacterial cell wallâ€mediated toxicity in macrophages and epithelial cells. Phytotherapy Research, 2009, 23, 1449-1452.	2.8	22
111	Streptococcus suis Infections in Humans: What is the prognosis for Western countries? (Part II). Clinical Microbiology Newsletter, 2010, 32, 97-102.	0.4	22
112	Anti-Inflammatory and Wound Healing Potential of <i>Citrus</i> Auraptene. Journal of Medicinal Food, 2013, 16, 961-964.	0.8	22
113	Identification and characterization of a new cell surface protein possessing factor H-binding activity in the swine pathogen and zoonotic agent Streptococcus suis. Journal of Medical Microbiology, 2013, 62, 1073-1080.	0.7	22
114	Resveratrol attenuates the pathogenic and inflammatory properties of <i>Porphyromonas gingivalis</i> . Molecular Oral Microbiology, 2019, 34, 118-130.	1.3	22
115	Binding and Utilization of Human Transferrin by <i>Prevotella nigrescens</i> . Infection and Immunity, 1999, 67, 576-580.	1.0	22
116	Acquisition of plasmin activity and induction of arachidonic acid release byStreptococcus suisin contact with human brain microvascular endothelial cells. FEMS Microbiology Letters, 2005, 252, 105-111.	0.7	21
117	Contribution of proteases and plasmin-acquired activity in migration of Peptostreptococcus micros through a reconstituted basement membrane. Oral Microbiology and Immunology, 2006, 21, 319-325.	2.8	21
118	Identification and characterization of a Streptococcus equi ssp. zooepidemicus immunogenic GroEL protein involved in biofilm formation. Veterinary Research, 2016, 47, 50.	1.1	21
119	Cloning, Purification, and Enzymatic Properties of Dipeptidyl Peptidase IV from the Swine Pathogen Streptococcus suis. Journal of Bacteriology, 2005, 187, 795-799.	1.0	20
120	Suppression of αvβ6 Integrin Expression by Polymicrobial Oral Biofilms in Gingival Epithelial Cells. Scientific Reports, 2017, 7, 4411.	1.6	20
121	Serotype-specific role of antigen I/II in the initial steps of the pathogenesis of the infection caused by Streptococcus suis. Veterinary Research, 2017, 48, 39.	1.1	20
122	Antibacterial activity against porcine respiratory bacterial pathogens and in vitro biocompatibility of essential oils. Archives of Microbiology, 2019, 201, 833-840.	1.0	20
123	Anti-biofilm and anti-adherence properties of novel cyclic dipeptides against oral pathogens. Bioorganic and Medicinal Chemistry, 2019, 27, 2323-2331.	1.4	20
124	Antimicrobial activities of natural plant compounds against endodontic pathogens and biocompatibility with human gingival fibroblasts. Archives of Oral Biology, 2020, 116, 104734.	0.8	20
125	Systemic antibiotic therapy in the treatment of periodontitis. Journal of the Canadian Dental Association, 2007, 73, 515-20.	0.6	20
126	Priming Effect of Fibronectin Fragments on the Macrophage Inflammatory Response: Potential Contribution to Periodontitis. Inflammation, 2012, 35, 1696-1705.	1.7	19

#	Article	IF	CITATIONS
127	Cytotoxic effect of peptidoglycan from Treponema denticola. Microbial Pathogenesis, 1993, 15, 389-397.	1.3	18
128	Antibacterial and Anti-inflammatory Activities of 4-Hydroxycordoin: Potential Therapeutic Benefits. Journal of Natural Products, 2011, 74, 26-31.	1.5	18
129	Fibrinogen-Induced <i>Streptococcus mutans</i> Biofilm Formation and Adherence to Endothelial Cells. BioMed Research International, 2013, 2013, 1-8.	0.9	18
130	The Kampo Medicine Rokumigan Possesses Antibiofilm, Anti-Inflammatory, and Wound Healing Properties. BioMed Research International, 2014, 2014, 1-6.	0.9	18
131	Suicin 90-1330 from a Nonvirulent Strain of Streptococcus suis: a Nisin-Related Lantibiotic Active on Gram-Positive Swine Pathogens. Applied and Environmental Microbiology, 2014, 80, 5484-5492.	1.4	18
132	Purification and Characterization of Suicin 65, a Novel Class I Type B Lantibiotic Produced by Streptococcus suis. PLoS ONE, 2015, 10, e0145854.	1.1	18
133	Impact of serotype and sequence type on the preferential aerosolization of Streptococcus suis. BMC Research Notes, 2016, 9, 273.	0.6	18
134	Antibiotic resistance related to biofilm formation in Streptococcus suis. Applied Microbiology and Biotechnology, 2020, 104, 8649-8660.	1.7	18
135	A general procedure for the isolation of heat-shock proteins from periodontopathogenic bacteria. Journal of Microbiological Methods, 1996, 25, 349-355.	0.7	17
136	Porphyromonas gingivalis-mediated shedding of extracellular matrix metalloproteinase inducer (EMMPRIN) by oral epithelial cells: a potential role in inflammatory periodontal disease. Microbes and Infection, 2011, 13, 1261-1269.	1.0	17
137	Biocompatible combinations of nisin and licorice polyphenols exert synergistic bactericidal effects against Enterococcus faecalis and inhibit NF-κB activation in monocytes. AMB Express, 2020, 10, 120.	1.4	17
138	<i>Fusobacterium nucleatum</i> Binding to Complement Regulatory Protein CD46 Modulates the Expression and Secretion of Cytokines and Matrix Metalloproteinases by Oral Epithelial Cells. Journal of Periodontology, 2011, 82, 311-319.	1.7	16
139	Amoeba Host Model for Evaluation of Streptococcus suis Virulence. Applied and Environmental Microbiology, 2011, 77, 6271-6273.	1.4	16
140	Neutralizing effect of green tea epigallocatechinâ€3â€gallate on nicotineâ€induced toxicity and chemokine (Câ€C motif) ligand 5 secretion in human oral epithelial cells and fibroblasts. Journal of Investigative and Clinical Dentistry, 2012, 3, 189-197.	1.8	16
141	The bias of experimental design, including strain background, in the determination of critical Streptococcus suis serotype 2 virulence factors. PLoS ONE, 2017, 12, e0181920.	1.1	16
142	Cranberry Proanthocyanidins Neutralize the Effects of Aggregatibacter actinomycetemcomitans Leukotoxin. Toxins, 2019, 11, 662.	1.5	16
143	Contribution of quorum sensing to virulence and antibiotic resistance in zoonotic bacteria. Biotechnology Advances, 2022, 59, 107965.	6.0	16
144	Purification and Characterization of a DnaK-like and a GroEL-like Protein from Porphyromonas gingivalis. Anaerobe, 1995, 1, 283-290.	1.0	15

#	Article	IF	CITATIONS
145	Binding of Pro-Matrix Metalloproteinase 9 by Fusobacterium nucleatum subsp. nucleatum as a Mechanism To Promote the Invasion of a Reconstituted Basement Membrane. Infection and Immunity, 2004, 72, 6160-6163.	1.0	15
146	Hemoglobin and Streptococcus suis cell wall act in synergy to potentiate the inflammatory response of monocyte-derived macrophages. Innate Immunity, 2008, 14, 357-363.	1.1	15
147	Effects of the Licorice Isoflavans Licoricidin and Glabridin on the Growth, Adherence Properties, and Acid Production of Streptococcus mutans, and Assessment of Their Biocompatibility. Antibiotics, 2021, 10, 163.	1.5	15
148	Characterization of DNase activity and gene in Streptococcus suis and evidence for a role as virulence factor. BMC Research Notes, 2014, 7, 424.	0.6	14
149	Outer Membrane-associated Deoxyribonuclease Activity of Porphyromonas gingivalis. Anaerobe, 1995, 1, 129-134.	1.0	13
150	Effects of 3-(4′-geranyloxy-3′-methoxyphenyl)-2-trans propenoic acid and its ester derivatives on biofilm formation by two oral pathogens, Porphyromonas gingivalis and Streptococcus mutans. European Journal of Medicinal Chemistry, 2008, 43, 1612-1620.	2.6	13
151	Endothelial cell/macrophage cocultures as a model to study <i>Streptococcus suis</i> -induced inflammatory responses. FEMS Immunology and Medical Microbiology, 2009, 55, 100-106.	2.7	13
152	Transferrin as a source of iron for <i>Campylobacter rectus</i> . Journal of Oral Microbiology, 2011, 3, 5660.	1.2	13
153	Impact of the use of Kampo medicine in patients with esophageal cancer during chemotherapy:a clinical trial for oral hygiene and oral condition. Journal of Medical Investigation, 2018, 65, 184-190.	0.2	13
154	Effects of <i>Actinobacillus pleuropneumoniae</i> on barrier function and inflammatory response of pig tracheal epithelial cells. Pathogens and Disease, 2019, 77, .	0.8	13
155	Tart cherry (<scp><i>Prunus cerasus</i> L.</scp>) fractions inhibit biofilm formation and adherence properties of oral pathogens and enhance oral epithelial barrier function. Phytotherapy Research, 2020, 34, 886-895.	2.8	13
156	A green tea extract and epigallocatechin-3-gallate attenuate the deleterious effects of irinotecan in an oral epithelial cell model. Archives of Oral Biology, 2021, 126, 105135.	0.8	13
157	Effect of microbial siderophores on matrix metalloproteinase-2 activity. Journal of Periodontal Research, 1999, 34, 50-53.	1.4	12
158	Active principles of <i>Grindelia robusta</i> exert antiinflammatory properties in a macrophage model. Phytotherapy Research, 2010, 24, 1687-1692.	2.8	12
159	Intracellular localization of <i>Treponema denticola</i> chymotrypsin-like proteinase in chronic periodontitis. Journal of Oral Microbiology, 2014, 6, 24349.	1.2	12
160	A polyphenolic cinnamon fraction exhibits anti-inflammatory properties in a monocyte/macrophage model. PLoS ONE, 2021, 16, e0244805.	1.1	12
161	Preventive Effect of Daiokanzoto (TJ-84) on 5-Fluorouracil-Induced Human Gingival Cell Death through the Inhibition of Reactive Oxygen Species Production. PLoS ONE, 2014, 9, e112689.	1.1	12
162	Stress response in Actinobacillus actinomycetemcomitans: Induction of general and specific stress proteins. Research in Microbiology, 2003, 154, 43-48.	1.0	11

#	Article	IF	CITATIONS
163	Streptococcus suisstimulates ICAM-1 shedding from microvascular endothelial cells. FEMS Immunology and Medical Microbiology, 2008, 54, 271-276.	2.7	11
164	Streptococcus suis Infections in Humans: What is the prognosis for Western countries? (Part I). Clinical Microbiology Newsletter, 2010, 32, 89-96.	0.4	11
165	TNF-α disrupts the integrity of the porcine respiratory epithelial barrier. Research in Veterinary Science, 2019, 124, 13-17.	0.9	11
166	Effects of Labrador Tea, Peppermint, and Winter Savory Essential Oils on Fusobacterium nucleatum. Antibiotics, 2020, 9, 794.	1.5	11
167	Collagen-binding activity of Prevotella intermedia measured by a microtitre plate adherence assay. Microbiology (United Kingdom), 1996, 142, 1537-1541.	0.7	11
168	Genome Sequence of the Swine Pathogen Streptococcus suis Serotype 2 Strain S735. Journal of Bacteriology, 2012, 194, 6343-6344.	1.0	10
169	Collinin ReducesPorphyromonas gingivalisGrowth and Collagenase Activity and Inhibits the Lipopolysaccharide-Induced Macrophage Inflammatory Response and Osteoclast Differentiation and Function. Journal of Periodontology, 2013, 84, 704-711.	1.7	10
170	Hyaluronate lyase activity of Streptococcus suis serotype 2 and modulatory effects of hyaluronic acid on the bacterium's virulence properties. BMC Research Notes, 2015, 8, 722.	0.6	10
171	Impact of Sub-Inhibitory Concentrations of Amoxicillin on Streptococcus suis Capsule Gene Expression and Inflammatory Potential. Pathogens, 2016, 5, 37.	1.2	10
172	Selective bacterial degradation of the extracellular matrix attaching the gingiva to the tooth. European Journal of Oral Sciences, 2019, 127, 313-322.	0.7	10
173	Characteristics of a protease inhibitor produced byPrevotella intermedia. FEMS Microbiology Letters, 1994, 119, 13-18.	0.7	9
174	Monitoring the Uptake of Protein-Derived Peptides by Porphyromonas gingivalis with Fluorophore-Labeled Substrates. Current Microbiology, 2003, 47, 1-4.	1.0	9
175	Modulation ofPorphyromonas GingivalisProteinase Activity by Suboptimal Doses of Antimicrobial Agents. Journal of Periodontology, 2003, 74, 1316-1319.	1.7	9
176	Effect of Hydroxamic Acid-Based Matrix Metalloproteinase Inhibitors on Human Gingival Cells andPorphyromonas gingivalis. Journal of Periodontology, 2003, 74, 1219-1224.	1.7	9
177	Effect of periodontopathogen lipopolysaccharides and proinflammatory cytokines on CD46, CD55, and CD59 gene/protein expression by oral epithelial cells. FEMS Immunology and Medical Microbiology, 2011, 62, 295-303.	2.7	9
178	A Review of Evidence for a Therapeutic Application of Traditional Japanese Kampo Medicine for Oral Diseases/Disorders. Medicines (Basel, Switzerland), 2018, 5, 35.	0.7	9
179	Synthesis and antimicrobial activity of geranyloxy- and farnesyloxy-acetophenone derivatives against oral pathogens. FA¬toterapA¬A¢, 2012, 83, 996-999.	1.1	8
180	Characterization of the zinc metalloprotease of Streptococcus suis serotype 2. Veterinary Research, 2018, 49, 109.	1.1	8

#	Article	IF	CITATIONS
181	Dipeptidylpeptidase IV of Streptococcus suis degrades the porcine antimicrobial peptide PR-39 and neutralizes its biological properties. Microbial Pathogenesis, 2018, 122, 200-206.	1.3	8
182	Synthesis and antiâ€inflammatory activity of diversified heterocyclic systems. Chemical Biology and Drug Design, 2019, 94, 1750-1759.	1.5	8
183	The bacteriocin from the prophylactic candidate Streptococcus suis 90-1330 is widely distributed across S. suis isolates and appears encoded in an integrative and conjugative element. PLoS ONE, 2019, 14, e0216002.	1.1	8
184	Effect of a Berry Polyphenolic Fraction on Biofilm Formation, Adherence Properties and Gene Expression of Streptococcus mutans and Its Biocompatibility with Oral Epithelial Cells. Antibiotics, 2021, 10, 46.	1.5	8
185	Selective growth inhibition ofPorphyromonas gingivalisby bestatin. FEMS Microbiology Letters, 1994, 123, 193-199.	0.7	7
186	Comparative growth ofPorphyromonas gingivalisstrains in a defined basal medium. Anaerobe, 1996, 2, 257-261.	1.0	7
187	Cleavage of Human Immunoglobulin G by Treponema denticola. Anaerobe, 2001, 7, 1-4.	1.0	7
188	Response of periodontitis and healthy patients in a <i>Porphyromonas gingivalis</i> â€stimulated wholeâ€blood model. Journal of Investigative and Clinical Dentistry, 2011, 2, 38-42.	1.8	7
189	The Daiokanzoto (TJ-84) Kampo Formulation Reduces Virulence Factor Gene Expression in Porphyromonas gingivalis and Possesses Anti-Inflammatory and Anti-Protease Activities. PLoS ONE, 2016, 11, e0148860.	1.1	7
190	A Dual Zinc plus Arginine formulation attenuates the pathogenic properties of <i>Porphyromonas gingivalis</i> and protects gingival keratinocyte barrier function in an <i>in vitro</i> model. Journal of Oral Microbiology, 2020, 12, 1798044.	1.2	7
191	Effect of cranberry juice deacidification on its antibacterial activity against periodontal pathogens and its anti-inflammatory properties in an oral epithelial cell model. Food and Function, 2021, 12, 10470-10483.	2.1	7
192	Highbush blueberry proanthocyanidins alleviate Porphyromonas gingivalis-induced deleterious effects on oral mucosal cells. Anaerobe, 2020, 65, 102266.	1.0	7
193	Human transferrin as a source of iron for Streptococcus intermedius. FEMS Microbiology Letters, 1998, 166, 127-133.	0.7	6
194	Effects of Dipeptide Bestatin onPorphyromonas gingivalisand Epithelial Cells. Journal of Periodontology, 2001, 72, 714-721.	1.7	6
195	Binding properties of <i>Treponema denticola</i> lipooligosaccharide. Journal of Oral Microbiology, 2013, 5, 21517.	1.2	6
196	Distribution of Suicin Gene Clusters in <i> Streptococcus suis</i> Serotype 2 Belonging to Sequence Types 25 and 28. BioMed Research International, 2016, 2016, 1-7.	0.9	6
197	Enolase and dipeptidyl peptidase IV protein sub-unit vaccines are not protective against a lethal Streptococcus suis serotype 2 challenge in a mouse model of infection. BMC Veterinary Research, 2019, 15, 448.	0.7	6
198	Production of trypsin and chymotrypsin inhibitors by oral bacterial isolates. Journal of Periodontal Research, 1991, 26, 381-387.	1.4	5

#	Article	IF	CITATIONS
199	Streptococcus suis suilysin compromises the function of a porcine tracheal epithelial barrier model. Microbial Pathogenesis, 2020, 139, 103913.	1.3	5
200	Effects of a tart cherry (Prunus cerasus L.) phenolic extract on Porphyromonas gingivalis and its ability to impair the oral epithelial barrier. PLoS ONE, 2021, 16, e0246194.	1.1	5
201	Assay for protease inhibitors: qualitative measurement and detection in polyacrylamide gel electrophoretograms. Journal of Proteomics, 1991, 22, 35-40.	2.4	4
202	Subinhibitory concentrations of tetracyclines induce <scp>lipopolysaccharide</scp> shedding by <i>Porphyromonas gingivalis</i> and modulate the host inflammatory response. Journal of Periodontal Research, 2014, 49, 603-608.	1.4	4
203	Candidate proteomic biomarkers for three genogroups of the swine pathogen Streptococcus suis serotype 2. BMC Microbiology, 2015, 15, 84.	1.3	4
204	Production of TNF-? by macrophages stimulated with endodontic pathogens and its effect on the biological properties of stem cells of the apical papilla. Clinical Oral Investigations, 2021, 25, 5307-5315.	1.4	4
205	Effects of hydrogen peroxide on growth and selected properties of Porphyromonas gingivalis. , 0, .		4
206	A cocoa (Theobroma cacao L.) extract impairs the growth, virulence properties, and inflammatory potential of Fusobacterium nucleatum and improves oral epithelial barrier function. PLoS ONE, 2021, 16, e0252029.	1.1	3
207	A Dual Zinc plus Arginine formulation protects against tumor necrosis factor-alpha-induced barrier dysfunction and enhances cell proliferation and migration in an in vitro gingival keratinocyte model. Archives of Oral Biology, 2021, 126, 105126.	0.8	3
208	Deacidification of Cranberry Juice Reduces Its Antibacterial Properties against Oral Streptococci but Preserves Barrier Function and Attenuates the Inflammatory Response of Oral Epithelial Cells. Foods, 2021, 10, 1634.	1.9	3
209	Effects of Biphenyl Sulfonylamino Methyl Bisphosphonic Acids on Porphyromonas Gingivalis and Cytokine Secretion by Oral Epithelial Cells. Medicinal Chemistry, 2013, 9, 855-860.	0.7	3
210	Synthesis and Biological Activities of 2,6-Dihydroxy-4-Isopentenyloxychalcone as an Antimicrobial and Anti-Inflammatory Compound. Medicinal Chemistry, 2014, 10, 300-303.	0.7	3
211	Eriodictyol Suppresses Porphyromonas gingivalis-Induced Reactive Oxygen Species Production by Gingival Keratinocytes and the Inflammatory Response of Macrophages. Frontiers in Oral Health, 2022, 3, 847914.	1.2	3
212	Antibacterial and Anti-inflammatory Activities of Ppc-1, Active Principle of the Cellular Slime Mold Polysphondylium pseudo-candidum. Medicinal Chemistry, 2015, 11, 666-669.	0.7	2
213	Expression of GroEL and DnaK Proteins during the Acquisition of a Transitory Resistance to Lethal Stresses byActinobacillus actinomycetemcomitans. Microbial Ecology in Health and Disease, 2003, 15, .	3.8	2
214	Effects of Saliva From Periodontally Healthy and Diseased Subjects on Barrier Function and the Inflammatory Response in in vitro Models of the Oral Epithelium. Frontiers in Oral Health, 2021, 2, 815728.	1.2	2
215	Expression of GroEL and DnaK Proteins during the Acquisition of a Transitory Resistance to Lethal Stresses byActinobacillus actinomycetemcomitans. Microbial Ecology in Health and Disease, 2003, 15, 120-125.	3.8	1
216	Rhamnus alpinus Leaf Extract Suppresses Lipopolysaccharide-Induced, Monocyte-Derived Macrophage Chemokine Secretion. Inflammation, 2008, 31, 313-318.	1.7	1

#	Article	IF	CITATIONS
217	Preventing Candida albicans biofilm formation using aromatic-rich piperazines. Bioorganic and Medicinal Chemistry, 2020, 28, 115810.	1.4	1
218	A Phenolic-rich Extract of Cocoa (Theobroma cacao L.) Beans Impairs the Pathogenic Properties of Porphyromonas gingivalis and Attenuates the Activation of Nuclear Factor Kappa B in a Monocyte Model. Frontiers in Oral Health, 2022, 3, 867793.	1.2	1
219	Effect of human secretory calcium-binding phosphoprotein proline-glutamine rich 1 protein on Porphyromonas gingivalis and identification of its active portions. Scientific Reports, 2021, 11, 23724.	1.6	1
220	Effects of a Berry Polyphenolic Fraction on the Pathogenic Properties of Porphyromonas gingivalis. Frontiers in Oral Health, 0, 3, .	1.2	1
221	Identification and Characterization of a Two-Peptide Class IIb Bacteriocin in Streptococcus pluranimalium Isolated from the Nasal Cavity of a Healthy Pig. Probiotics and Antimicrobial Proteins, 2022, 14, 204-215.	1.9	0