Mark A Randolph Mas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7601497/publications.pdf

Version: 2024-02-01

87 papers 4,315 citations

35 h-index 64 g-index

90 all docs 90 docs citations

90 times ranked 4576 citing authors

#	Article	IF	CITATIONS
1	Controlled Degradation and Mechanical Behavior of Photopolymerized Hyaluronic Acid Networks. Biomacromolecules, 2005, 6, 386-391.	2.6	669
2	Injectable Tissue-Engineered Cartilage Using a Fibrin Glue Polymer. Plastic and Reconstructive Surgery, 1999, 103, 1809-1818.	0.7	195
3	Tissue Engineered Neocartilage Using Plasma Derived Polymer Substrates and Chondrocytes. Plastic and Reconstructive Surgery, 1998, 101, 1580-1585.	0.7	176
4	Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nature Communications, 2016, 7, 10374.	5.8	173
5	Transdermal Photopolymerization of Poly (Ethylene Oxide)-Based Injectable Hydrogels for Tissue-Engineered Cartilage. Plastic and Reconstructive Surgery, 1999, 104, 1014-1022.	0.7	164
6	The Tissue-Engineered Auricle: Past, Present, and Future. Tissue Engineering - Part B: Reviews, 2012, 18, 51-61.	2.5	149
7	Injectable Cartilage Using Polyethylene Oxide Polymer Substrates. Plastic and Reconstructive Surgery, 1996, 98, 843-850.	0.7	139
8	Transdermal Photopolymerization of Poly (Ethylene Oxide)-Based Injectable Hydrogels for Tissue-Engineered Cartilage. Plastic and Reconstructive Surgery, 1999, 104, 1014-1022.	0.7	136
9	Augmenting peripheral nerve regeneration using stem cells: A review of current opinion. World Journal of Stem Cells, 2015, 7, 11.	1.3	119
10	Split tolerance to a composite tissue allograft in a swine model. Transplantation, 2003, 75, 25-31.	0.5	116
11	Tolerance to composite tissue allografts across a major histocompatibility barrier in miniature swine1. Transplantation, 2004, 77, 514-521.	0.5	111
12	Injectable Tissue-Engineered Cartilage with Different Chondrocyte Sources. Plastic and Reconstructive Surgery, 2004, 113, 1361-1371.	0.7	110
13	Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell, 2021, 39, 1464-1478.e8.	7.7	98
14	Hydrazone covalent adaptable networks modulate extracellular matrix deposition for cartilage tissue engineering. Acta Biomaterialia, 2019, 83, 71-82.	4.1	86
15	Engineering Ear Constructs with a Composite Scaffold to Maintain Dimensions. Tissue Engineering - Part A, 2011, 17, 1573-1581.	1.6	82
16	Tissue-Engineered Flexible Ear-Shaped Cartilage. Plastic and Reconstructive Surgery, 2005, 115, 1633-1641.	0.7	78
17	Microvascular anastomosis using a photochemical tissue bonding technique. Lasers in Surgery and Medicine, 2007, 39, 716-722.	1.1	76
18	Covalently tethered TGF― β 1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. Journal of Biomedical Materials Research - Part A, 2014, 102, 4464-4472.	2.1	72

#	Article	lF	Citations
19	Cell-Based Tissue-Engineered Allogeneic Implant for Cartilage Repair. Tissue Engineering, 2000, 6, 567-576.	4.9	68
20	Bonding of cartilage matrices with cultured chondrocytes: An experimental model. Journal of Orthopaedic Research, 1998, 16, 89-95.	1.2	67
21	Biomechanical Analysis of a Chondrocyte-Based Repair Model of Articular Cartilage. Tissue Engineering, 1999, 5, 317-326.	4.9	64
22	Concise Review: Unraveling Stem Cell Cocultures in Regenerative Medicine: Which Cell Interactions Steer Cartilage Regeneration and How?. Stem Cells Translational Medicine, 2014, 3, 723-733.	1.6	63
23	Improving electrophysiologic and histologic outcomes by photochemically sealing amnion to the peripheral nerve repair site. Surgery, 2009, 145, 313-321.	1.0	62
24	Photochemical Tissue Bonding: A Promising Technique for Peripheral Nerve Repair. Journal of Surgical Research, 2007, 143, 224-229.	0.8	60
25	A Biomechanical Analysis of an Engineered Cell-Scaffold Implant for Cartilage Repair. Annals of Plastic Surgery, 2001, 46, 533-537.	0.5	59
26	Meniscal repair using engineered tissue. Journal of Orthopaedic Research, 2001, 19, 278-285.	1.2	53
27	Photochemical Sealing Improves Outcome Following Peripheral Neurorrhaphy. Journal of Surgical Research, 2009, 151, 33-39.	0.8	51
28	Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage. Acta Biomaterialia, 2017, 64, 41-49.	4.1	51
29	Chondrogenic Priming Adipose-Mesenchymal Stem Cells for Cartilage Tissue Regeneration. Pharmaceutical Research, 2011, 28, 1395-1405.	1.7	50
30	An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor \hat{l}^2 3. Acta Biomaterialia, 2019, 93, 97-110.	4.1	49
31	Porous Poly(Vinyl Alcohol)-Hydrogel Matrix-Engineered Biosynthetic Cartilage. Tissue Engineering - Part A, 2011, 17, 301-309.	1.6	43
32	A photoactivated nanofiber graft material for augmented Achilles tendon repair. Lasers in Surgery and Medicine, 2012, 44, 645-652.	1.1	42
33	Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model. Tissue Engineering - Part A, 2016, 22, 197-207.	1.6	42
34	Successful Creation of Tissue-Engineered Autologous Auricular Cartilage in an Immunocompetent Large Animal Model. Tissue Engineering - Part A, 2014, 20, 303-312.	1.6	37
35	Strategies for tolerance induction to composite tissue allografts. Microsurgery, 2000, 20, 448-452.	0.6	35
36	Tissue engineering of cartilage. Clinics in Plastic Surgery, 2003, 30, 519-537.	0.7	35

#	Article	IF	CITATIONS
37	Comprehensive Evaluation of Peripheral Nerve Regeneration in the Acute Healing Phase Using Tissue Clearing and Optical Microscopy in a Rodent Model. PLoS ONE, 2014, 9, e94054.	1.1	34
38	Enhancing the stiffness of collagen hydrogels for delivery of encapsulated chondrocytes to articular lesions for cartilage regeneration. Journal of Biomedical Materials Research - Part A, 2015, 103, 1332-1338.	2.1	34
39	Creation of a Bioengineered Skin Flap Scaffold with a Perfusable Vascular Pedicle. Tissue Engineering - Part A, 2017, 23, 696-707.	1.6	32
40	A Biosynthetic Scaffold that Facilitates Chondrocyte-Mediated Degradation and Promotes Articular Cartilage Extracellular Matrix Deposition. Regenerative Engineering and Translational Medicine, 2015, 1, 11-21.	1.6	28
41	Bioengineered Self-assembled Skin as an Alternative to Skin Grafts. Plastic and Reconstructive Surgery - Global Open, 2016, 4, e731.	0.3	28
42	Chondrogenesis by bone marrowâ€derived mesenchymal stem cells grown in chondrocyteâ€conditioned medium for auricular reconstruction. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2763-2773.	1,3	28
43	The gracilis myocutaneous free flap in swine: An advantageous preclinical model for vascularized composite allograft transplantation research. Microsurgery, 2013, 33, 51-55.	0.6	27
44	Extensively Expanded Auricular Chondrocytes Form Neocartilage <i>In Vivo</i> . Cartilage, 2014, 5, 241-251.	1.4	27
45	Biomimetic and mechanically supportive 3D printed scaffolds for cartilage and osteochondral tissue engineering using photopolymers and digital light processing. Biofabrication, 2021, 13, 044106.	3.7	26
46	Light-Activated Sealing of Nerve Graft Coaptation Sites Improves Outcome following Large Gap Peripheral Nerve Injury. Plastic and Reconstructive Surgery, 2015, 136, 739-750.	0.7	25
47	Engineering Cartilage in a Photochemically Crosslinked Collagen Gel. Journal of Knee Surgery, 2009, 22, 72-81.	0.9	24
48	Wide-Field Functional Microscopy of Peripheral Nerve Injury and Regeneration. Scientific Reports, 2018, 8, 14004.	1.6	23
49	Graft vasculopathy of vascularized composite allografts in humans: a literature review and retrospective study. Transplant International, 2019, 32, 831-838.	0.8	23
50	Longitudinal Model of Periprosthetic Joint Infection in the Rat. Journal of Orthopaedic Research, 2020, 38, 1101-1112.	1.2	20
51	Conditions for seeding and promoting neo-auricular cartilage formation in a fibrous collagen scaffold. Journal of Cranio-Maxillo-Facial Surgery, 2015, 43, 382-389.	0.7	17
52	A light-activated amnion wrap strengthens colonic anastomosis and reduces peri-anastomotic adhesions. Lasers in Surgery and Medicine, 2016, 48, 530-537.	1.1	16
53	Mechanobiological Interactions between Dynamic Compressive Loading and Viscoelasticity on Chondrocytes in Hydrazone Covalent Adaptable Networks for Cartilage Tissue Engineering. Advanced Healthcare Materials, 2021, 10, e2002030.	3.9	16
54	Adhesion and integration of tissue engineered cartilage to porous polyethylene for composite ear reconstruction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 983-991.	1.6	15

#	Article	IF	Citations
55	Photochemical Tissue Passivation Reduces Vein Graft Intimal Hyperplasia in a Swine Model of Arteriovenous Bypass Grafting. Journal of the American Heart Association, 2016, 5, .	1.6	15
56	Heterotopic limb allotransplantation model to study skin rejection in the rat. Microsurgery, 2004, 24, 448-453.	0.6	13
57	Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels. BMC Musculoskeletal Disorders, 2016, 17, 245.	0.8	13
58	Toward Development of the Delayed Tolerance Induction Protocol for Vascularized Composite Allografts in Nonhuman Primates. Plastic and Reconstructive Surgery, 2020, 145, 757e-768e.	0.7	13
59	Light-Activated Sealing of Acellular Nerve Allografts following Nerve Gap Injury. Journal of Reconstructive Microsurgery, 2016, 32, 421-430.	1.0	12
60	Ovine Model for Auricular Reconstruction. Annals of Otology, Rhinology and Laryngology, 2014, 123, 135-140.	0.6	9
61	Immunomodulatory Strategies Directed Toward Tolerance of Vascularized Composite Allografts. Transplantation, 2015, 99, 1590-1597.	0.5	9
62	Decellularized extracellular matrix microparticles seeded with bone marrow mesenchymal stromal cells for the treatment of full-thickness cutaneous wounds. Journal of Biomaterials Applications, 2019, 33, 1070-1079.	1.2	9
63	Prolonged General Anesthesia for Experimental Craniofacial Surgery in Fetal Swine. Journal of Investigative Surgery, 1997, 10, 53-57.	0.6	8
64	Effects of Transient Donor Chimerism on Rejection of MHC-Mismatched Vascularized Composite Allografts in Swine. Vascularized Composite Allotransplantation, 2015, 2, 1-8.	0.5	8
65	Photochemical Tissue Passivation Attenuates AV Fistula Intimal Hyperplasia. Annals of Surgery, 2018, 267, 183-188.	2.1	8
66	Optimization of Ex Vivo Machine Perfusion and Transplantation of Vascularized Composite Allografts. Journal of Surgical Research, 2022, 270, 151-161.	0.8	8
67	Xenotransplantation model for vascularized musculoskeletal tissues in rodents. , 2000, 20, 59-64.		6
68	Hyaline Articular Matrix Formed by Dynamic Self-Regenerating Cartilage and Hydrogels. Tissue Engineering - Part A, 2016, 22, 962-970.	1.6	6
69	A Photosealed Cap Prevents Disorganized Axonal Regeneration and Neuroma following Nerve Transection in Rats. Plastic and Reconstructive Surgery - Global Open, 2022, 10, e4168.	0.3	6
70	Exceeding the Limits of Static Cold Storage in Limb Transplantation Using Subnormothermic Machine Perfusion. Journal of Reconstructive Microsurgery, 2023, 39, 350-360.	1.0	6
71	Prolonged Survival in Fetal Rabbit Surgery. Journal of Investigative Surgery, 1998, 11, 57-61.	0.6	4
72	Assessment and prevention of cartilage degeneration surrounding a focal chondral defect in the porcine model. Biochemical and Biophysical Research Communications, 2019, 514, 940-945.	1.0	4

#	Article	IF	CITATIONS
73	Local Immunosuppression for Vascularized Composite Allografts: Application of Topical FK506-TyroSpheres in a Nonhuman Primate Model. Journal of Burn Care and Research, 2020, 41, 1172-1178.	0.2	4
74	Cutaneous leukocyte lineages in tolerant large animal and immunosuppressed clinical vascularized composite allograft recipients. American Journal of Transplantation, 2021, 21, 582-592.	2.6	4
75	Lightâ€activated photosealing with human amniotic membrane strengthens bowel anastomosis in a hypotensive, traumaâ€relevant swine model. Lasers in Surgery and Medicine, 2022, 54, 407-417.	1.1	4
76	Postnatal xenogeneic Bâ€cell tolerance in swine following <i>in utero</i> intraportal antigen exposure. Xenotransplantation, 2015, 22, 368-378.	1.6	3
77	Photochemical Tissue Passivation Prevents Contracture of Full Thickness Wounds in Mice. Lasers in Surgery and Medicine, 2019, 51, 910-919.	1.1	3
78	Photochemical Tissue Passivation of Arteriovenous Grafts Prevents Long-Term Development of Intimal Hyperplasia in a Swine Model. Journal of Surgical Research, 2020, 253, 280-287.	0.8	3
79	Partial Heterotopic Hindlimb Transplantation Model in Rats. Journal of Visualized Experiments, 2021, , .	0.2	2
80	Local FK506 implants in non-human primates to prevent early acute rejection in vascularized composite allografts. Annals of Translational Medicine, 2021, 9, 1070-1070.	0.7	2
81	Cells for Cartilage Regeneration. , 2020, , 33-99.		1
82	A Reliable Porcine Fascio-Cutaneous Flap Model for Vascularized Composite Allografts Bioengineering Studies. Journal of Visualized Experiments, 2022, , .	0.2	1
83	Light-Activated Vascular Anastomosis. Surgical Innovation, 2023, 30, 143-149.	0.4	1
84	In Vivo Activity of Genetically Modified Cells Preseeded in Rat Vascularized Composite Allografts. Transplantation Proceedings, 2021, 53, 1751-1755.	0.3	0
85	Animal Models for Engineering Tissues in the Upper Extremity. , 2010, , 95-124.		0
86	Cells for Cartilage Regeneration. , 2018, , 1-67.		0
87	Specific Bone Marrow Mesenchymal Subsets in Patients with Myelodysplastic Syndromes Harbor Molecular Perturbations That Alter the Dynamics of Competition between Pre-Leukemic Clones and Normal Cells. Blood, 2018, 132, 938-938.	0.6	0