
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7601121/publications.pdf Version: 2024-02-01

FLENA V RASILIK

#	Article	IF	CITATIONS
1	Deposition of Gold Nanoparticles onto Thiol-Functionalized Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 16290-16295.	2.6	120
2	Interaction of Oxidized Single-Walled Carbon Nanotubes with Vaporous Aliphatic Amines. Journal of Physical Chemistry B, 2002, 106, 1588-1597.	2.6	117
3	Direct Solvent-Free Amination of Closed-Cap Carbon Nanotubes:  A Link to Fullerene Chemistry. Nano Letters, 2004, 4, 863-866.	9.1	114
4	Irradiation of Single-Walled Carbon Nanotubes with High-Energy Protons. Nano Letters, 2002, 2, 789-791.	9.1	64
5	Effects of Covalent Functionalization on the Biocompatibility Characteristics of Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2008, 8, 2347-2356.	0.9	51
6	Noncovalent bonding of 3d metal(II) phthalocyanines with single-walled carbon nanotubes: A combined DFT and XPS study. Applied Surface Science, 2019, 470, 622-630.	6.1	49
7	Adsorption Modification of Single-Walled Carbon Nanotubes with Tetraazaannulene Macrocyclic Complexes. Nano Letters, 2002, 2, 1249-1252.	9.1	45
8	Noncovalent functionalization of graphene with a Ni(<scp>ii</scp>) tetraaza[14]annulene complex. Dalton Transactions, 2014, 43, 7413-7428.	3.3	40
9	Solvent-free covalent functionalization of nanodiamond with amines. Applied Surface Science, 2013, 275, 324-334.	6.1	35
10	Solvent-free one-step covalent functionalization of graphene oxide and nanodiamond with amines. RSC Advances, 2016, 6, 113596-113610.	3.6	34
11	Ecotoxicological Effects of Carbon Nanomaterials on Algae, Fungi and Plants. Journal of Nanoscience and Nanotechnology, 2011, 11, 3016-3038.	0.9	32
12	One-step nondestructive functionalization of graphene oxide paper with amines. RSC Advances, 2018, 8, 15253-15265.	3.6	32
13	Noncovalent functionalization of pristine CVD single-walled carbon nanotubes with 3d metal(II) phthalocyanines by adsorption from the gas phase. Applied Surface Science, 2018, 436, 1123-1133.	6.1	32
14	â€~Green' derivatization of carbon nanotubes with Nylon 6 andl-alanine. Journal of Materials Chemistry, 2006, 16, 4420-4426.	6.7	31
15	Direct Amidation of Terminal Carboxylic Groups of Armchair and Zigzag Single-Walled Carbon Nanotubes:  A Theoretical Study. Nano Letters, 2001, 1, 657-661.	9.1	30
16	Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects. Applied Surface Science, 2012, 259, 465-476.	6.1	30
17	Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers. Applied Surface Science, 2016, 371, 16-27.	6.1	27
18	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 38, 45-56.	1.6	26

2

#	Article	IF	CITATIONS
19	Polymerization of C60 fullerene thin films by UV pulsed laser irradiation. Applied Surface Science, 2005, 248, 243-247.	6.1	26
20	Noncovalent functionalization of single-walled carbon nanotubes with porphyrins. Applied Surface Science, 2013, 275, 168-177.	6.1	26
21	Noncovalent Functionalization of Carbon Nanotubes with Porphyrins: meso-Tetraphenylporphine and Its Transition Metal Complexes. Journal of Nanoscience and Nanotechnology, 2007, 7, 1530-1538.	0.9	24
22	"Green―Functionalization of Pristine Multi-Walled Carbon Nanotubes with Long-Chain Aliphatic Amines. Journal of Nanoscience and Nanotechnology, 2011, 11, 5546-5554.	0.9	23
23	Solvent-free functionalization of carbon nanotube buckypaper with amines. Applied Surface Science, 2015, 357, 1355-1368.	6.1	23
24	Solvent-free functionalization of fullerene C60 and pristine multi-walled carbon nanotubes with aromatic amines. Applied Surface Science, 2015, 328, 45-62.	6.1	22
25	Noncovalent complexes of <i>I</i> _h â^'C ₈₀ fullerene with phthalocyanines. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 69-75.	2.1	21
26	Reaction of silica-supported fullerene C60 with nonylamine vapor. Carbon, 2003, 41, 2339-2346.	10.3	19
27	Solvent-Free Derivatization of Pristine Multi-Walled Carbon Nanotubes with Amines. Journal of Nanoscience and Nanotechnology, 2005, 5, 984-990.	0.9	19
28	Poly(vinyl alcohol)/CNT composites: An effect of cross-linking with glutaraldehyde. Superlattices and Microstructures, 2009, 46, 379-383.	3.1	19
29	Complexation of free-base and 3 <i>d</i> transition metal(II) phthalocyanines with fullerene C ₆₀ : A dispersion-corrected DFT study. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 410-416.	2.1	18
30	Thermal smearing in DFT calculations: How small is really small? A case of La and Lu atoms adsorbed on graphene. Materials Today Communications, 2020, 25, 101595.	1.9	18
31	Solvent-free derivatization of pristine multi-walled carbon nanotubes with dithiols. Materials Letters, 2006, 60, 3741-3746.	2.6	17
32	Gas-phase noncovalent functionalization of carbon nanotubes with a Ni(II) tetraaza[14]annulene complex. Applied Surface Science, 2013, 270, 634-647.	6.1	17
33	Graphene oxide and nanodiamond: same carboxylic groups, different complexation properties. RSC Advances, 2017, 7, 17442-17450.	3.6	16
34	Carbon Nanotubes and Graphene Promote Pyrolysis of Free-Base Phthalocyanine. Journal of Physical Chemistry Letters, 2018, 9, 4420-4427.	4.6	16
35	Nanostructured Diamine–Fullerene Derivatives: Computational Density Functional Theory Study and Experimental Evidence for their Formation via Gas-Phase Functionalization. Journal of Physical Chemistry A, 2012, 116, 1663-1676.	2.5	15
36	Solvent-free functionalization of graphene oxide powder and paper with aminobenzo-crown ethers and complexation with alkali metal cations. Materials Chemistry and Physics, 2021, 260, 124127.	4.0	14

#	Article	IF	CITATIONS
37	Cross-Linking of C ₆₀ Films with 1,8-Diaminooctane and Further Decoration with Silver Nanoparticles. Journal of Nanoscience and Nanotechnology, 2007, 7, 3563-3571.	0.9	13
38	Phytotoxicity of carbon nanotubes and nanodiamond in long-term assays with Cactaceae plant seedlings. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 141-149.	2.1	13
39	Aggregation of Human Serum Albumin on Graphite and Single-Walled Carbon Nanotubes as Studied by Scanning Probe Microscopies. Journal of Nanoscience and Nanotechnology, 2011, 11, 5491-5498.	0.9	12
40	Deposition of silver nanoparticles onto human serum albuminâ€functionalised multiâ€walled carbon nanotubes. Canadian Journal of Chemical Engineering, 2013, 91, 264-270.	1.7	11
41	Stability of interstellar fullerenes under high-dose γ-irradiation. Advances in Space Research, 2004, 33, 72-75.	2.6	10
42	Interactions of Porphyrins with Low-Dimensional Carbon Materials. Journal of Computational and Theoretical Nanoscience, 2009, 6, 1383-1411.	0.4	10
43	Effect of structural defects on the strength of adsorption of La and Lu species on graphene. Diamond and Related Materials, 2019, 100, 107597.	3.9	10
44	Dielectric Properties of (C60+ C70)—Ferroelectric Liquid Crystal Composite. Fullerenes Nanotubes and Carbon Nanostructures, 2004, 12, 681-690.	2.1	9
45	Green Chemistry of Carbon Nanomaterials. Journal of Nanoscience and Nanotechnology, 2014, 14, 644-672.	0.9	9
46	Interactions between cation-encapsulated single-walled carbon nanotubes M+@SWNT (M+=H, Li, Na) and nucleophiles. Computational Materials Science, 2008, 44, 240-246.	3.0	8
47	Solvent-free derivatization of oxidized single-walled carbon nanotubes and nanodiamond with aminobenzo-crown ethers. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 653-661.	2.1	8
48	Solvent-Free Covalent Functionalization of Fullerene C60 and Pristine Multi-Walled Carbon Nanotubes with Crown Ethers. Journal of Nanoscience and Nanotechnology, 2016, 16, 6173-6184.	0.9	8
49	(C-rac-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N)(nicotinato-O,O′)nickel(II) perchlorate. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 553-555.	0.4	7
50	Interaction of Thermally Pretreated Carbon Nanomaterials with Water Vapor. Journal of Nanoscience and Nanotechnology, 2004, 4, 77-81.	0.9	7
51	Optical and electrical characterization of chemically and photopolymerized C60 thin films on silicon substrates. Thin Solid Films, 2007, 515, 7716-7720.	1.8	7
52	Fullerene C60 Films Cross-Linked with Octane-1,8-Dithiol: Preparation, Characterization and the Use as Template for Chemical Deposition of Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2008, 8, 3828-3837.	0.9	7
53	Transformation of Plant Cell Suspension Cultures with Amine-Functionalized Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2016, 16, 7461-7471.	0.9	7
54	Eco-friendly synthesis of graphene oxide–silver nanoparticles hybrids: The effect of amine derivatization. Diamond and Related Materials, 2021, 111, 108208.	3.9	7

#	Article	IF	CITATIONS
55	High-energy ball-milling preparation and characterization of Ln2O3â^'graphite nanocomposites. Materials Today Communications, 2021, 26, 102030.	1.9	7
56	Systemic Phytotoxic Impact of as-Prepared Carbon Nanotubes in Long-Term Assays: A Case Study of <i>Parodia ayopayana</i> (Cactaceae). Science of Advanced Materials, 2013, 5, 1337-1345.	0.7	7
57	Microwave Irradiation of Pristine Multi-Walled Carbon Nanotubes in Vacuum. Journal of Nanoscience and Nanotechnology, 2010, 10, 448-455.	0.9	6
58	Effects of solvent-free amine functionalization of graphene oxide and nanodiamond on bacterial growth. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 58-66.	2.1	6
59	Phototransformation of C60 Thin Films by UV Pulsed Laser Irradiation: Comparative Photoacoustic, AFM, and Raman Studies. Journal of Nanoscience and Nanotechnology, 2007, 7, 1414-1418.	0.9	6
60	Regioselectivity in Azahydro[60]fullerene Derivatives: Application of General-Purpose Reactivity Indicators. Journal of Physical Chemistry A, 2008, 112, 8154-8163.	2.5	5
61	Photoluminescent properties of liposome-encapsulated amine-functionalized nanodiamonds. Nano Express, 2020, 1, 030009.	2.4	5
62	Adsorption of Lanthanide Atoms on Graphene: Similar, Yet Different. Journal of Physical Chemistry Letters, 2022, 13, 6042-6047.	4.6	5
63	Spontaneous anisotropic etching of the InP(100) surface in concentrated hydrochloric and sulfuric acids. Surface and Coatings Technology, 1994, 67, 51-54.	4.8	4
64	Molecular modeling of octahedral complex cations composed of [Ni(II)(rac-Me6[14]aneN4)]2+ units and bidentate carboxylate ligands. Computational and Theoretical Chemistry, 2001, 536, 17-24.	1.5	4
65	Optical characterization of fullerene films on flat and patterned semiconductor substrates. Carbon, 2004, 42, 1089-1093.	10.3	4
66	Stability of interstellar fullerenes under high-dose γ-irradiation: new data. Advances in Space Research, 2005, 36, 173-177.	2.6	4
67	Nanohybrids of Nylon 6 with Multi-Walled Carbon Nanotubes: Solvent-Free Polymerization of ε-Caprolactam Under Variable Experimental Conditions. Journal of Nanoscience and Nanotechnology, 2009, 9, 3313-3319.	0.9	4
68	Genotoxic Properties of Nylon-6/MWNTs Nanohybrid. Journal of Nanoscience and Nanotechnology, 2009, 9, 4727-4734.	0.9	4
69	Chemical Functionalization of Inner Walls of Carbon Nanotubes with Long-Chain Aliphatic Amines. Nanoscience and Nanotechnology Letters, 2017, 9, 712-718.	0.4	4
70	Morphology, atomic composition and photoelectric properties of the microrelief InP-electrolyte interface. Applied Surface Science, 1995, 90, 489-495.	6.1	3
71	Interaction Between NO ₂ and an Elongated Fullerene C ₆₀ . Journal of Computational and Theoretical Nanoscience, 2010, 7, 408-413.	0.4	3
72	Fullerene Thin Films Functionalized by 1,5-Diaminonaphthalene: Preparation and Properties. Journal of Nanoscience and Nanotechnology, 2011, 11, 5569-5573.	0.9	3

#	Article	IF	CITATIONS
73	A dispersionâ€corrected density functional theory study of the noncovalent interactions between nucleobases and carbon nanotube models containing stone–wales defects. Journal of Computational Chemistry, 2020, 41, 780-789.	3.3	3
74	Chemical Crosslinking in C60 Thin Films. , 2006, , 453-462.		3
75	Solvent-Free Functionalization of Carbon Nanomaterials. , 2015, , 163-205.		3
76	Amine-Functionalized Multi-Walled Carbon Nanotubes: An Atomic Force Microscopy Study. Journal of Scanning Probe Microscopy, 2009, 4, 100-106.	0.0	3
77	N-doped carbon nanofibers from pyrolysis of free-base phthalocyanine. Diamond and Related Materials, 2020, 105, 107812.	3.9	2
78	Generation of paramagnetic centers in carboxylated materials via coordination attachment of diamagnetic tetraazamacrocyclic complexes of nickel(II). Journal of Materials Science, 2020, 55, 5364-5377.	3.7	1
79	Growth of C60 Fullerene Films on Semiconductor Surfaces. Materials Research Society Symposia Proceedings, 2003, 768, 3121.	0.1	0
80	Reactions of microcrystalline fullerene C60 with amino and aza macrocyclic ligands under solvent-free conditions. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 491-501.	2.1	0
81	Atomic Force Microscopy of Extraterrestrial Samples. Journal of Advanced Microscopy Research, 2010, 5, 159-176.	0.3	0