Oscar M GonzÃ;lez DÃ-az

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7600931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TiO2 activation by using activated carbon as a support Part I. Surface characterisation and decantability study. Applied Catalysis B: Environmental, 2003, 44, 161-172.	10.8	151
2	TiO2 activation by using activated carbon as a support Part II. Photoreactivity and FTIR study. Applied Catalysis B: Environmental, 2003, 44, 153-160.	10.8	122
3	Effect of inorganic ions on the photocatalytic treatment of agro-industrial wastewaters containing imazalil. Applied Catalysis B: Environmental, 2014, 156-157, 284-292.	10.8	119
4	TiO2-photocatalysis as a tertiary treatment of naturally treated wastewater. Catalysis Today, 2002, 76, 279-289.	2.2	117
5	Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu. Journal of Molecular Catalysis A, 2004, 215, 153-160.	4.8	112
6	Comparative study of alcohols as sacrificial agents in H2 production by heterogeneous photocatalysis using Pt/TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 312, 45-54.	2.0	110
7	Photocatalytic degradation of formic acid using Fe/TiO2 catalysts: the role of Fe3+/Fe2+ ions in the degradation mechanism. Applied Catalysis B: Environmental, 2001, 32, 49-61.	10.8	106
8	Highly concentrated phenolic wastewater treatment by the Photo-Fenton reaction, mechanism study by FTIR-ATR. Chemosphere, 2001, 44, 1017-1023.	4.2	104
9	FTIR study of gas-phase alcohols photocatalytic degradation with TiO2 and AC-TiO2. Applied Catalysis B: Environmental, 2004, 53, 221-232.	10.8	103
10	Efficient and affordable hydrogen production byÂwater photo-splitting using TiO2-based photocatalysts. International Journal of Hydrogen Energy, 2013, 38, 2144-2155.	3.8	101
11	Tissue distribution of metals in loggerhead turtles (Caretta caretta) stranded in the Canary Islands, Spain. Marine Pollution Bulletin, 2004, 49, 854-860.	2.3	92
12	Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecological Engineering, 2010, 36, 891-899.	1.6	87
13	Photocatalytic degradation of phenolic compounds with new TiO2 catalysts. Applied Catalysis B: Environmental, 2010, 100, 346-354.	10.8	85
14	Effect of TiO2–Pd and TiO2–Ag on the photocatalytic oxidation of diclofenac, isoproturon and phenol. Chemical Engineering Journal, 2016, 298, 82-95.	6.6	77
15	Role of Fe3+/Fe2+ as TiO2 dopant ions in photocatalytic degradation of carboxylic acids. Journal of Molecular Catalysis A, 2003, 197, 157-171.	4.8	75
16	Maleic acid photocatalytic degradation using Fe-TiO2 catalysts. Applied Catalysis B: Environmental, 2002, 36, 113-124.	10.8	74
17	Highly photoactive ZnO by amine capping-assisted hydrothermal treatment. Applied Catalysis B: Environmental, 2008, 83, 30-38.	10.8	70
18	Production of hydrogen by water photo-splitting over commercial and synthesised Au/TiO2 catalysts. Applied Catalysis B: Environmental, 2014, 147, 439-452.	10.8	70

#	Article	IF	CITATIONS
19	Photocatalytic degradation of phenol and phenolic compounds. Journal of Hazardous Materials, 2007, 146, 520-528.	6.5	66
20	Effect of deposition of silver on structural characteristics and photoactivity of TiO2-based photocatalysts. Applied Catalysis B: Environmental, 2012, 127, 112-120.	10.8	66
21	Hydrogen production using Pt-loaded TiO2 photocatalysts. International Journal of Hydrogen Energy, 2013, 38, 11737-11748.	3.8	66
22	Activity coefficients for NaCl in ethanol-water mixtures at 25�C. Journal of Solution Chemistry, 1989, 18, 277-288.	0.6	63
23	Role of Cu in the Cu-TiO2 photocatalytic degradation of dihydroxybenzenes. Catalysis Today, 2005, 101, 261-266.	2.2	62
24	Comparative study of MTBE photocatalytic degradation with TiO2 and Cu-TiO2. Applied Catalysis B: Environmental, 2008, 78, 355-363.	10.8	60
25	Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories. Chemosphere, 2004, 55, 893-904.	4.2	58
26	Photocatalytic removal of 2,4-dichlorophenoxyacetic acid by using sol–gel synthesized nanocrystalline and commercial TiO2: Operational parameters optimization and toxicity studies. Applied Catalysis B: Environmental, 2012, 125, 28-34.	10.8	55
27	Detoxification of waters contaminated with phenol, formaldehyde and phenol–formaldehyde mixtures using a combination of biological treatments and advanced oxidation techniques. Applied Catalysis B: Environmental, 2015, 163, 63-73.	10.8	51
28	FTIR study of formic acid interaction with TiO2 and TiO2 doped with Pd and Cu in photocatalytic processes. Applied Surface Science, 2004, 239, 60-71.	3.1	49
29	Quantification of <i>p</i> â€phenylenediamine and 2â€hydroxyâ€1,4â€naphthoquinone in henna tattoos. Contact Dermatitis, 2012, 66, 33-37.	0.8	47
30	Adsorption and photocatalytic degradation of 2,4-dichlorophenol in TiO2 suspensions. Effect of hydrogen peroxide, sodium peroxodisulphate and ozone. Applied Catalysis A: General, 2013, 455, 227-233.	2.2	43
31	Enhancement of stability and photoactivity of TiO2 coatings on annular glass reactors to remove emerging pollutants from waters. Chemical Engineering Journal, 2015, 279, 488-497.	6.6	43
32	Comparison of supported TiO2 catalysts in the photocatalytic degradation of NOx. Journal of Molecular Catalysis A, 2016, 413, 56-66.	4.8	43
33	Kinetics and adsorption comparative study on the photocatalytic degradation of o-, m- and p-cresol. Catalysis Today, 2007, 129, 256-262.	2.2	42
34	ZnO activation by using activated carbon as a support: Characterisation and photoreactivity. Applied Catalysis A: General, 2009, 364, 174-181.	2.2	41
35	Differentiation at autopsy between in vivo gas embolism and putrefaction using gas composition analysis. International Journal of Legal Medicine, 2013, 127, 437-445.	1.2	41
36	Optimization of the degradation of imazalil by photocatalysis: Comparison between commercial and lab-made photocatalysts. Applied Catalysis B: Environmental, 2013, 138-139, 391-400.	10.8	41

#	Article	IF	CITATIONS
37	Influence of nickel in the hydrogen production activity of TiO2. Applied Catalysis B: Environmental, 2014, 152-153, 192-201.	10.8	39
38	Reuse of Phoenix canariensis palm frond mulch as biosorbent and as precursor of activated carbons for the adsorption of Imazalil in aqueous phase. Chemical Engineering Journal, 2014, 245, 348-358.	6.6	36
39	Decompression vs. Decomposition: Distribution, Amount, and Gas Composition of Bubbles in Stranded Marine Mammals. Frontiers in Physiology, 2012, 3, 177.	1.3	35
40	Study of the photocatalytic activity of Pt-modified commercial TiO2 for hydrogen production in the presence of common organic sacrificial agents. Applied Catalysis A: General, 2016, 518, 189-197.	2.2	35
41	Activity coefficients for NaBr in ethanol-water mixtures at كاني1⁄2C. Journal of Solution Chemistry, 1995, 24, 551-563.	0.6	34
42	The effect of acetic acid on the photocatalytic degradation of catechol and resorcinol. Applied Catalysis A: General, 2006, 299, 274-284.	2.2	34
43	Photodegradation of 2,4-dichlorophenoxyacetic acid over TiO2(B)/anatase nanobelts and Au-TiO2(B)/anatase nanobelts. Applied Surface Science, 2019, 467-468, 1076-1087.	3.1	34
44	Activity coefficients of NaCl in aqueous mixtures with É≻increasing co-solvent: Formamide–water mixtures at 298.15K. Fluid Phase Equilibria, 2009, 275, 116-126.	1.4	33
45	High levels of polychlorinated biphenyls in tissues of Atlantic turtles stranded in the Canary Islands, Spain. Chemosphere, 2009, 74, 473-478.	4.2	32
46	Origin of Optical Excitations in Fluorine-Doped Titania from Response Function Theory: Relevance to Photocatalysis. Journal of Physical Chemistry Letters, 2012, 3, 2269-2274.	2.1	32
47	Effect of hydrothermal treatment on structural and photocatalytic properties of TiO2 synthesized by sol–gel method. Applied Catalysis A: General, 2012, 411-412, 153-159.	2.2	32
48	NO photooxidation with TiO2 photocatalysts modified with gold and platinum. Applied Catalysis B: Environmental, 2017, 205, 148-157.	10.8	32
49	Effect of NO2 and NO3-/HNO3 adsorption on NO photocatalytic conversion. Applied Catalysis B: Environmental, 2019, 244, 660-670.	10.8	30
50	High concentrated phenol and 1,2-propylene glycol water solutions treatment by photocatalysis. Applied Catalysis B: Environmental, 2001, 30, 1-10.	10.8	28
51	Role of Pd and Cu in gas-phase alcohols photocatalytic degradation with doped TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174, 7-14.	2.0	27
52	Influence of amine template on the photoactivity of TiO2 nanoparticles obtained by hydrothermal treatment. Applied Catalysis B: Environmental, 2008, 78, 176-182.	10.8	27
53	Differences in the vapour phase photocatalytic degradation of ammonia and ethanol in the presence of water as a function of TiO2 characteristics and the presence of O2. Catalysis Today, 2016, 266, 53-61.	2.2	27
54	Methodology for in situ gas sampling, transport and laboratory analysis of gases from stranded cetaceans. Scientific Reports, 2011, 1, 193.	1.6	26

#	Article	IF	CITATIONS
55	Solar photocatalytic removal of herbicides from real water by using sol–gel synthesized nanocrystalline TiO2: Operational parameters optimization and toxicity studies. Solar Energy, 2013, 87, 150-157.	2.9	26
56	Organochlorine pesticide levels in loggerhead turtles (Caretta caretta) stranded in the Canary Islands, Spain. Marine Pollution Bulletin, 2008, 56, 1949-1952.	2.3	25
57	Photocatalytic treatment of water containing imazalil using an immobilized TiO 2 photoreactor. Applied Catalysis A: General, 2015, 498, 1-9.	2.2	25
58	Photocatalytical removal of bentazon using commercial and sol–gel synthesized nanocrystalline TiO2: Operational parameters optimization and toxicity studies. Chemical Engineering Journal, 2012, 203, 52-62.	6.6	23
59	Treatment of effluents from wool dyeing process by photo-Fenton at solar pilot plant. Journal of Environmental Chemical Engineering, 2014, 2, 163-171.	3.3	23
60	Synthesis of highly photoactive TiO2 and Pt/TiO2 nanocatalysts for substrate-specific photocatalytic applications. Applied Catalysis B: Environmental, 2012, 125, 383-389.	10.8	22
61	Degradation and detoxification of formalin wastewater with aerated biological filters and wetland reactors. Process Biochemistry, 2008, 43, 1432-1435.	1.8	21
62	Comparative study of nanocrystalline titanium dioxide obtained through sol–gel and sol–gel–hydrothermal synthesis. Journal of Colloid and Interface Science, 2013, 400, 31-40.	5.0	21
63	Synthesis of sol-gel pyrophyllite/TiO2 heterostructures: Effect of calcination temperature and methanol washing on photocatalytic activity. Surfaces and Interfaces, 2019, 14, 19-25.	1.5	21
64	Mesoporous pyrophyllite–titania nanocomposites: synthesis and activity in phenol photocatalytic degradation. Research on Chemical Intermediates, 2019, 45, 333-353.	1.3	21
65	Comparative study of phenolic compounds mixtures. Catalysis Today, 2007, 129, 177-184.	2.2	20
66	Highly photoactive TiO2 microspheres for photocatalytic production of hydrogen. International Journal of Hydrogen Energy, 2019, 44, 24653-24666.	3.8	18
67	Highly concentrated phenolic wastewater treatment by heterogeneous and homogeneous photocatalysis: mechanism study by FTIR-ATR. Water Science and Technology, 2001, 44, 229-236.	1.2	17
68	Thermal effect of carboxylic acids in the degradation by photo-Fenton of high concentrations of ethylene glycol. Applied Catalysis B: Environmental, 2012, 113-114, 107-115.	10.8	17
69	Catalytic Efficiency of Cu-Supported Pyrophyllite in Heterogeneous Catalytic Oxidation of Phenol. Arabian Journal for Science and Engineering, 2019, 44, 6313-6325.	1.7	17
70	Factorial experimental design of imazalil-containing wastewater to be treated by Fenton-based processes. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 240-250.	2.0	16
71	TiO2-based (Fe3O4, SiO2, reduced graphene oxide) magnetically recoverable photocatalysts for imazalil degradation in a synthetic wastewater. Environmental Science and Pollution Research, 2018, 25, 27724-27736.	2.7	15
72	Activity coefficients for trichloroacetic acid (HTCA) at 25° C from emf measurements of the mixed system HCl + HTCA + H2O. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 255, 71-83.	0.3	14

Oscar M GonzÃilez DÃaz

#	Article	IF	CITATIONS
73	Effect of stone filters in a pond–wetland system treating raw wastewater from a university campus. Desalination, 2009, 237, 277-284.	4.0	11
74	Detoxification of the herbicide propanil by means of Fenton process and TiO2-photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 291, 34-43.	2.0	11
75	Study of adsorption and degradation of dimethylphthalate on TiO2-based photocatalysts. Chemical Physics, 2016, 475, 112-118.	0.9	11
76	Effect of TiO2 Addition on Mortars: Characterization and Photoactivity. Applied Sciences (Switzerland), 2019, 9, 2598.	1.3	11
77	Differentiation at necropsy between in vivo gas embolism and putrefaction using a gas score. Research in Veterinary Science, 2016, 106, 48-55.	0.9	10
78	Activity coefficients in mixed-electrolyte solutions at 25�C: Na-formate + NaCl system. Journal of Solution Chemistry, 1989, 18, 265-276.	0.6	8
79	The Effect of Modifying TiO2 on Catechol and Resorcinol Photocatalytic Degradation. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 80-86.	1.1	8
80	Comparative analysis of the activity coefficients for the system NaBr+NaFormate+H2O at 25�C by the methods of scatchard, pitzer and lim. Journal of Solution Chemistry, 1991, 20, 417-429.	0.6	7
81	Comparative study on the photocatalytic mineralization of homologous aliphatic acids and alcohols. Applied Surface Science, 2006, 252, 8193-8202.	3.1	7
82	Effect of Lewis acid centres and H2O2-complexes on the photocatalytic degradation of phenol. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 249, 61-69.	2.0	7
83	TiO2 and F-TiO2 photocatalytic deactivation in gas phase. Chemical Physics Letters, 2017, 684, 164-170.	1.2	7
84	FTIR study of the photocatalytic degradation of NH4+ determination wastes. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 215-222.	2.0	6
85	Comparative Study of Photocatalytic Degradation Mechanisms of Pyrimethanil, Triadimenol, and Resorcinol. Journal of Solar Energy Engineering, Transactions of the ASME, 2008, 130, .	1.1	5
86	Effect of additives in photocatalytic degradation of commercial azo dye Lanaset Sun Yellow 180. Photochemical and Photobiological Sciences, 2013, 12, 703-708.	1.6	5
87	Bubbles Quantified In vivo by Ultrasound Relates to Amount of Gas Detected Post-mortem in Rabbits Decompressed from High Pressure. Frontiers in Physiology, 2016, 7, 310.	1.3	5
88	Treatment of wastewater containing imazalil by means of Fenton-based processes. Desalination and Water Treatment, 2016, 57, 13865-13877.	1.0	5
89	Influence of Water on the Oxidation of NO on Pd/TiO2 Photocatalysts. Nanomaterials, 2020, 10, 2354.	1.9	5
90	lonic interactions in aqueous solutions of organic electrolytes. Activity coefficients for (sodium) Tj ETQq0 0 0 rgB1	Г /Overlocl 1.9	k 10 Tf 50 6

equations. Journal of Electroanalytical Chemistry, 1992, 335, 11-17.

Oscar M GonzÃilez DÃaz

#	Article	IF	CITATIONS
91	Conventional and photocatalytic degradation of aromatic amines from nitrite determination wastes. Toxicological and Environmental Chemistry, 2003, 85, 61-73.	0.6	4
92	Controlling the growth of nanosized titania <i>via</i> polymer gelation for photocatalytic applications. RSC Advances, 2020, 10, 19443-19453.	1.7	4
93	Transference number measurements in aqueous solutions at 25.degree.C. 3. Lithium bromide. Journal of Chemical & Engineering Data, 1987, 32, 474-476.	1.0	3
94	lonic Interactions in Aqueous Solutions of Organic Electrolytes: The System NaCl + NaHSucc + H ₂ O at 25°C. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1989, 93, 1114-1118.	0.9	3
95	Activity coefficients for aqueous solutions of potassium succinate (K2Succ) at 25 °C. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 2575.	1.0	2
96	Efect of Ti F surface interaction on the photocatalytic degradation of phenol, aniline and formic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 139-149.	2.0	2
97	Effect of the Co-deposition of Pd and Pt on \$\$hbox {TiO}_{2}\$\$ TiO 2 Photoactivity. Arabian Journal for Science and Engineering, 2019, 44, 131-143.	1.7	2
98	Transference numbers for aqueous solutions of trichloroacetic acid (HTCA) at 25°C by the emf method. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 262, 97-103.	0.3	0
99	Transference number measurements for lithium bromide in ethanol-water mixtures at 25.degree.C. Journal of Chemical & Engineering Data, 1989, 34, 448-452.	1.0	0
100	Transference numbers for NaCl in a 60 wt.% ethanol–water mixture at 25 °C. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 603-606.	1.7	0
101	Adsorption and Photocatalytic Degradation of Phthalic Acid on TiO2 and ZnO. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	0
102	Valorisation of a by-product from the TiO ₂ pigment industry for its application in advanced oxidation processes. Desalination and Water Treatment, 2016, 57, 26211-26221.	1.0	0