List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7600780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammatory Mechanisms of Exertional Dyspnea in Southwest Asia Deployed Military Veterans. Free Radical Biology and Medicine, 2022, 180, s52.	1.3	О
2	In vivo Inhibition of Cholesterol Esterification Alters Inflammation and Signaling in Macrophages. Free Radical Biology and Medicine, 2022, 180, s85.	1.3	0
3	Mechanisms of Nitroalkene Inhibition of Macrophage Activation in Acute Lung Injury. Free Radical Biology and Medicine, 2022, 180, s87.	1.3	О
4	Mechanisms of Nitroalkene Inhibition of TLR4 Mediated Macrophage Activation. FASEB Journal, 2022, 36, .	0.2	0
5	Acatâ€1 Inhibition Reduces Inflammatory Response to Bleomycinâ€mediated Lung Injury. FASEB Journal, 2022, 36, .	0.2	0
6	A Novel Method for Measuring Lung Metabolism of Precision ut Lung Slices. FASEB Journal, 2022, 36, .	0.2	0
7	Inflammatory Activation and Nitric Oxide Oxidation in Exertional Dyspnea in Southwest Asia Deployed Military Veterans. FASEB Journal, 2022, 36, .	0.2	0
8	Seeing Through the Smoke: The Importance of Toxicological Testing in Nicotine Delivery Systems. Applied in Vitro Toxicology, 2022, 8, 38-38.	0.6	0
9	Obesity elicits a unique metabolomic signature in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L297-L307.	1.3	4
10	Myeloid cell dynamics in bleomycin-induced pulmonary injury in mice; effects of anti-TNFα antibody. Toxicology and Applied Pharmacology, 2021, 417, 115470.	1.3	6
11	The Evaluation of Acute Lung Injury Induced by Nitrogen Mustard in Mouse Precision Cut Lung Slices. FASEB Journal, 2021, 35, .	0.2	0
12	Development of Feed Forward and Conditional Models Based on Rodent Imaging Data to Predict Effects of Nitrogen Mustard on Pulmonary Function. FASEB Journal, 2021, 35, .	0.2	0
13	Using a 3‣ayer Artificial Neural Network to Predict Sâ€Nitrosylation. FASEB Journal, 2021, 35, .	0.2	0
14	Rosiglitazone restores pulmonary surfactant and lipid homeostasis in mice exposed to ozone. FASEB Journal, 2021, 35, .	0.2	0
15	When and How Can We Stop Using Animals in Toxicology?. Applied in Vitro Toxicology, 2021, 7, 37-38.	0.6	0
16	Biological Mechanisms of S-Nitrosothiol Formation and Degradation: How Is Specificity of S-Nitrosylation Achieved?. Antioxidants, 2021, 10, 1111.	2.2	14
17	Macrophage activation in the lung during the progression of nitrogen mustard induced injury is associated with histone modifications and altered miRNA expression. Toxicology and Applied Pharmacology, 2021, 423, 115569.	1.3	6
18	Effects of fatty acid nitroalkanes on signal transduction pathways and airway macrophage activation. Innate Immunity, 2021, 27, 353-364.	1.1	1

#	Article	IF	CITATIONS
19	Comprehensive dataset to assess morphological changes subsequent to bleomycin exposure. Data in Brief, 2021, 37, 107270.	0.5	2
20	Pulmonary Inflammation and Injury in a Mouse Model of Non-Alcoholic Steatohepatitis. Aresty Rutgers Undergraduate Research Journal, 2021, 1, .	0.0	0
21	Cell Origin and iNOS Function Are Critical to Macrophage Activation Following Acute Lung Injury. Frontiers in Pharmacology, 2021, 12, 761496.	1.6	10
22	Multiple Approaches to Understanding the Toxic Dose. Applied in Vitro Toxicology, 2021, 7, 158-158.	0.6	0
23	Lung injury, oxidative stress and fibrosis in mice following exposure to nitrogen mustard. Toxicology and Applied Pharmacology, 2020, 387, 114798.	1.3	28
24	Regulation of Lung Macrophage Activation and Oxidative Stress Following Ozone Exposure by Farnesoid X Receptor. Toxicological Sciences, 2020, 177, 441-453.	1.4	17
25	Fatty acid nitroalkenes inhibit the inflammatory response to bleomycin-mediated lung injury. Toxicology and Applied Pharmacology, 2020, 407, 115236.	1.3	6
26	Assessment of mustard vesicant lung injury and antiâ€TNF―α efficacy in rodents using liveâ€animal imaging. Annals of the New York Academy of Sciences, 2020, 1480, 246-256.	1.8	4
27	Transcriptional profiling of lung macrophages during pulmonary injury induced by nitrogen mustard. Annals of the New York Academy of Sciences, 2020, 1480, 146-154.	1.8	5
28	Chemical warfare agent research in precisionâ€cut tissue slices—a useful alternative approach. Annals of the New York Academy of Sciences, 2020, 1480, 44-53.	1.8	1
29	What Do We Mean by Applied In Vitro Toxicology?. Applied in Vitro Toxicology, 2020, 6, 45-46.	0.6	0
30	Precision Cut Lung Slices as a Model for 3R Application in Toxicology. Applied in Vitro Toxicology, 2020, 6, 47-48.	0.6	4
31	Nitroâ€Oleic Fatty Acids Reduce Cellular Metabolism in Activated Macrophages Leading to Reduced Inflammatory Potential. FASEB Journal, 2020, 34, 1-1.	0.2	0
32	Nitrated Fatty Acids Reduce Inflammatory Cell Recruitment in Bleomycinâ€Induced Lung Injury. FASEB Journal, 2020, 34, 1-1.	0.2	0
33	PPARγ Regulates the Inflammatory Response to Ozoneâ€Induced Lung Injury in Mice. FASEB Journal, 2020, 34, 1-1.	0.2	0
34	Surfactant protein-D modulation of pulmonary macrophage phenotype is controlled byS-nitrosylation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L539-L549.	1.3	9
35	Regulation of Macrophage Foam Cell Formation During Nitrogen Mustard (NM)-Induced Pulmonary Fibrosis by Lung Lipids. Toxicological Sciences, 2019, 172, 344-358.	1.4	23
36	Surfactant Protein D Variants in Sepsis-Induced Lung Injury Following Ozone Exposure. , 2019, , .		0

#	Article	IF	CITATIONS
37	Revisiting John Snow to Meet the Challenge of Nontuberculous Mycobacterial Lung Disease. International Journal of Environmental Research and Public Health, 2019, 16, 4250.	1.2	9
38	Serum surfactant protein D as a marker for bronchopulmonary dysplasia. Journal of Maternal-Fetal and Neonatal Medicine, 2019, 32, 815-819.	0.7	7
39	Myeloid Cell Recruitment and Activation Following Ozone Exposure in a Murine Model of Mutant Surfactant Protein Pulmonary Dysfunction. FASEB Journal, 2019, 33, 542.19.	0.2	0
40	Protective Role of Surfactant Protein-D Against Lung Injury and Oxidative Stress Induced by Nitrogen Mustard. Toxicological Sciences, 2018, 166, 108-122.	1.4	9
41	Exposure to Silver Nanospheres Leads to Altered Respiratory Mechanics and Delayed Immune Response in an in Vivo Murine Model. Frontiers in Pharmacology, 2018, 9, 213.	1.6	14
42	Use of Submicron Vaterite Particles Serves as an Effective Delivery Vehicle to the Respiratory Portion of the Lung. Frontiers in Pharmacology, 2018, 9, 559.	1.6	28
43	Beet the Best?. Circulation Research, 2018, 123, 654-659.	2.0	34
44	Immune Checkpoint Ligand PD-L1 Is Upregulated in Pulmonary Lymphangioleiomyomatosis. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 723-732.	1.4	37
45	Downregulation of Guanylate Cyclase Enzyme in Human Asthma model to Investigate NOâ€sGc―cGMP as a Therapeutic Pathway in Asthma. FASEB Journal, 2018, 32, 840.11.	0.2	2
46	World Trade Center (WTC) dust exposure in mice is associated with inflammation, oxidative stress and epigenetic changes in the lung. Experimental and Molecular Pathology, 2017, 102, 50-58.	0.9	25
47	Regulation of Nitrogen Mustard-Induced Lung Macrophage Activation by Valproic Acid, a Histone Deacetylase Inhibitor. Toxicological Sciences, 2017, 157, 222-234.	1.4	26
48	Toward point-of-care management of chronic respiratory conditions: Electrochemical sensing of nitrite content in exhaled breath condensate using reduced graphene oxide. Microsystems and Nanoengineering, 2017, 3, 17022.	3.4	60
49	Editor's Highlight: Role of Spleen-Derived Macrophages in Ozone-Induced Lung Inflammation and Injury. Toxicological Sciences, 2017, 155, 182-195.	1.4	22
50	Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation. PLoS Computational Biology, 2017, 13, e1005570.	1.5	10
51	Utility of Exhaled Breath Condensate in Predicting Bronchopulmonary Dysplasia. , 2017, , .		0
52	Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity. Nanotoxicology, 2016, 10, 1-10.	1.6	23
53	Pulmonary effects of inhalation of spark-generated silver nanoparticles in Brown-Norway and Sprague–Dawley rats. Respiratory Research, 2016, 17, 85.	1.4	42
54	Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells. Colloids and Surfaces B: Biointerfaces, 2016, 145, 167-175.	2.5	30

#	Article	IF	CITATIONS
55	Carboxylation of multiwalled carbon nanotubes reduces their toxicity in primary human alveolar macrophages. Environmental Science: Nano, 2016, 3, 1340-1350.	2.2	26
56	Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells. Nanotoxicology, 2016, 10, 1351-1362.	1.6	42
57	Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing. FASEB Journal, 2016, 30, 2115-2122.	0.2	181
58	Role of NOS2 in pulmonary injury and repair in response to bleomycin. Free Radical Biology and Medicine, 2016, 91, 293-301.	1.3	32
59	Characterization of Distinct Macrophage Subpopulations during Nitrogen Mustard–Induced Lung Injury and Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 436-446.	1.4	75
60	Utility of Exhaled Breath Condensate in Predicting Bronchopulmonary Dysplasia. Pediatrics, 2016, 137, 435A-435A.	1.0	0
61	Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model. Medical Physics, 2015, 42, 4822-4832.	1.6	14
62	Modulation of Human Macrophage Responses to Mycobacterium tuberculosis by Silver Nanoparticles of Different Size and Surface Modification. PLoS ONE, 2015, 10, e0143077.	1.1	43
63	Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution. PLoS ONE, 2015, 10, e0144250.	1.1	10
64	Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells. Nanoscale, 2015, 7, 10398-10409.	2.8	31
65	Oxygen Metabolism in the Lung. , 2015, , 355-374.		0
66	Pharmacological targeting of VEGFR signaling with axitinib inhibits <i>Tsc2</i> -null lesion growth in the mouse model of lymphangioleiomyomatosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1447-L1454.	1.3	20
67	Protective role of spleen-derived macrophages in lung inflammation, injury, and fibrosis induced by nitrogen mustard. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1487-L1498.	1.3	31
68	Adsorption of surfactant protein D from human respiratory secretions by carbon nanotubes and polystyrene nanoparticles depends on nanomaterial surface modification and size. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140038.	1.8	13
69	Radiation-Induced Lung Injury and Inflammation in Mice: Role of Inducible Nitric Oxide Synthase and Surfactant Protein D. Toxicological Sciences, 2015, 144, 27-38.	1.4	42
70	Surfactant Dysfunction and Lung Inflammation in the Female Mouse Model of Lymphangioleiomyomatosis. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 96-104.	1.4	21
71	Static and Dynamic Microscopy of the Chemical Stability and Aggregation State of Silver Nanowires in Components of <i>Murine</i> Pulmonary Surfactant. Environmental Science & Technology, 2015, 49, 8048-8056.	4.6	21
72	The role of inducible nitric oxide synthase for interstitial remodeling of alveolar septa in surfactant protein D-deficient mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L959-L969.	1.3	16

#	Article	IF	CITATIONS
73	Pulmonary Toxicity of Instilled Silver Nanoparticles: Influence of Size, Coating and Rat Strain. PLoS ONE, 2015, 10, e0119726.	1.1	94
74	Nitrogen Mustard (NM)â€induced Lung Fibrosis is Associated with Altered Lipid Metabolism and Foam Cell Formation. FASEB Journal, 2015, 29, 774.2.	0.2	0
75	NOS2 Is Critical to the Development of Emphysema in Sftpd Deficient Mice but Does Not Affect Surfactant Homeostasis. PLoS ONE, 2014, 9, e85722.	1.1	18
76	Oxygen-Linked S-Nitrosation in Fish Myoglobins: A Cysteine-Specific Tertiary Allosteric Effect. PLoS ONE, 2014, 9, e97012.	1.1	8
77	A controlled trial of acute effects of human exposure to traffic particles on pulmonary oxidative stress and heart rate variability. Particle and Fibre Toxicology, 2014, 11, 45.	2.8	55
78	Folliculin Controls Lung Alveolar Enlargement and Epithelial Cell Survival through E-Cadherin, LKB1, and AMPK. Cell Reports, 2014, 7, 412-423.	2.9	84
79	Regulation of keratinocyte expression of stress proteins and antioxidants by the electrophilic nitrofatty acids 9- and 10-nitrooleic acid. Free Radical Biology and Medicine, 2014, 67, 1-9.	1.3	11
80	Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction. Toxicology and Applied Pharmacology, 2014, 278, 53-64.	1.3	35
81	Plasma nitrite is an indicator of acute changes in ambient air pollutant concentrations. Inhalation Toxicology, 2014, 26, 426-434.	0.8	7
82	Pentoxifylline attenuates nitrogen mustard-induced acute lung injury, oxidative stress and inflammation. Experimental and Molecular Pathology, 2014, 97, 89-98.	0.9	71
83	Histologic and biochemical alterations predict mechanical dysfunction in aging and chronically inflamed mice (717.4). FASEB Journal, 2014, 28, 717.4.	0.2	Ο
84	Technical and knowledgeâ€based outcomes following a oneâ€week high school research program in toxicology and environmental health sciences (1058.1). FASEB Journal, 2014, 28, 1058.1.	0.2	0
85	The Stability of Silver Nanoparticles in a Model of Pulmonary Surfactant. Environmental Science & Technology, 2013, 47, 11232-11240.	4.6	99
86	Immunofluorescent detection of S-nitrosoproteins in cell culture. Methods, 2013, 62, 161-164.	1.9	3
87	Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale, 2013, 5, 9839.	2.8	56
88	Ozone-Induced Injury and Oxidative Stress in Bronchiolar Epithelium Are Associated with Altered Pulmonary Mechanics. Toxicological Sciences, 2013, 133, 309-319.	1.4	46
89	Mouse lung volume reconstruction from efficient groupwise registration of individual histological slices with natural gradient. Proceedings of SPIE, 2013, , .	0.8	1
90	Aquaporin 11 insufficiency modulates kidney susceptibility to oxidative stress. American Journal of Physiology - Renal Physiology, 2013, 304, F1295-F1307.	1.3	42

#	Article	IF	CITATIONS
91	Tocopherol supplementation reduces NO production and pulmonary inflammatory response to bleomycin. Nitric Oxide - Biology and Chemistry, 2013, 34, 27-36.	1.2	8
92	High-Resolution Analytical Electron Microscopy Reveals Cell Culture Media-Induced Changes to the Chemistry of Silver Nanowires. Environmental Science & Technology, 2013, 47, 13813-13821.	4.6	33
93	Multiscale multimodal fusion of histological and MRI volumes for characterization of lung inflammation. Proceedings of SPIE, 2013, , .	0.8	3
94	Age-related increases in ozone-induced injury and altered pulmonary mechanics in mice with progressive lung inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L555-L568.	1.3	33
95	Computational Multiscale Toxicodynamic Modeling of Silver and Carbon Nanoparticle Effects on Mouse Lung Function. PLoS ONE, 2013, 8, e80917.	1.1	9
96	Prolonged Injury and Altered Lung Function after Ozone Inhalation in Mice with Chronic Lung Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 776-783.	1.4	40
97	Alteration in vascular nitric oxide metabolism in control and diabetic subjects following an acute exposure to roadway air pollution. Nitric Oxide - Biology and Chemistry, 2012, 27, S12.	1.2	0
98	NOS2 mediates lung structure and function changes in the SP-D model of emphysema without improving surfactant homeostasis. Nitric Oxide - Biology and Chemistry, 2012, 27, S42.	1.2	0
99	S-nitrosylation of cysteine 227 controls oligomerization of aquaporin 11 in kidney. Nitric Oxide - Biology and Chemistry, 2012, 27, S42.	1.2	0
100	Role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase in vesicant-induced lung injury and inflammation. Nitric Oxide - Biology and Chemistry, 2012, 27, S44.	1.2	0
101	Regulation of cellular processes by S-nitrosylation. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 673-674.	1.1	3
102	Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor. Toxicology and Applied Pharmacology, 2012, 265, 279-291.	1.3	50
103	Copper modulates the phenotypic response of activated BV2 microglia through the release of nitric oxide. Nitric Oxide - Biology and Chemistry, 2012, 27, 201-209.	1.2	24
104	Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning. Toxicology and Applied Pharmacology, 2012, 261, 22-30.	1.3	39
105	Atypical PKCζ transduces electrophilic fatty acid signaling in pulmonary epithelial cells. Nitric Oxide - Biology and Chemistry, 2011, 25, 366-372.	1.2	9
106	Membrane transfer of S-nitrosothiols. Nitric Oxide - Biology and Chemistry, 2011, 25, 102-107.	1.2	24
107	Loss Of Inducible Nitric Oxide Synthase (INOS) Protects Mice From Vesicant-Induced Lung Injury And Altered Lung Function. , 2011, , .		0
108	Induction Of Autophagy In The Lung Following Inhalation Of Ozone Is Independent Of Age. , 2011, , .		0

#	Article	IF	CITATIONS
109	In-vehicle Exposures to Traffic and Biomarkers of Airway Oxidative Stress Among Healthy Humans. Epidemiology, 2011, 22, S217-S218.	1.2	0
110	Validation Of Exhaled Breath Condensate Measures Of Oxidative And Nitrosative Stress As Markers Of Acute Traffic Pollution Effects. , 2011, , .		0
111	Role Of Caveolin-1 In Silica-Induced Injury In The Mouse Lung. , 2011, , .		Ο
112	Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard. Toxicology and Applied Pharmacology, 2011, 250, 10-18.	1.3	51
113	Role of TNFR1 in lung injury and altered lung function induced by the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicology and Applied Pharmacology, 2011, 250, 245-255.	1.3	33
114	Surfactant Protein-D Regulates Alveolar Macrophage Phenotype. , 2011, , .		1
115	Segmental Allergen Challenge Alters Multimeric Structure and Function of Surfactant Protein D in Humans. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 856-864.	2.5	35
116	Early Alveolar Epithelial Dysfunction Promotes Lung Inflammation in a Mouse Model of Hermansky-Pudlak Syndrome. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 449-458.	2.5	56
117	A Hemoglobin Variant Associated with Neonatal Cyanosis and Anemia. New England Journal of Medicine, 2011, 364, 1837-1843.	13.9	27
118	Nitric Oxide and Cellular Maturity Are Key Components of Pro-Inflammatory Cytokine-Induced Apoptosis of Human Fetal Lung Epithelial Cells. The Open Cell Development & Biology Journal, 2011, 3, 1-5.	1.0	1
119	Controlled Exposure To Diesel Exhaust Is Associated With A Transient Increase In Nitrite In Exhaled Breath Condensate In Healthy Humans. , 2010, , .		0
120	Alterations In Multimeric Structure Of Surfactant Protein D As A Biomarker For Lung Injury And Inflammation In Humans. , 2010, , .		0
121	Macrophages, reactive nitrogen species, and lung injury. Annals of the New York Academy of Sciences, 2010, 1203, 60-65.	1.8	28
122	Post-Translational Modifications Of Surfactant Protein D (SP-D) In Hermansky-Pudlak Syndrome. , 2010, , .		0
123	The Increased INOS-activity In The SP-D Knockout Mice Mediates The Development Of Pulmonary Emphysema But Not Changes Related To Intracellular Surfactant Homeostas. , 2010, , .		0
124	Surfactant Protein D (SP-D)-Dependent Regulation Of NO Metabolism And Cytokines Production In Lipopolysaccharide (LPS)-Stimulated Peritoneal Macrophages. , 2010, , .		0
125	Ozone Inhalation Is Associated With Inflammation, M1 Macrophage Polarization, And Altered Lung Functioning. , 2010, , .		0
126	Review: Chemical and structural modifications of pulmonary collectins and their functional consequences. Innate Immunity, 2010, 16, 175-182.	1.1	34

#	Article	IF	CITATIONS
127	Inhaled nitric oxide in premature infants: effect on tracheal aspirate and plasma nitric oxide metabolites. Journal of Perinatology, 2010, 30, 275-280.	0.9	13
128	Immune Reconstitution duringPneumocystisLung Infection: Disruption of Surfactant Component Expression and Function byS-Nitrosylation. Journal of Immunology, 2009, 182, 2277-2287.	0.4	53
129	Nitric Oxide Biochemistry: Pathophysiology of Nitric Oxide-Mediated Protein Modifications. , 2009, , 29-44.		2
130	A cis-Proline in α-Hemoglobin Stabilizing Protein Directs the Structural Reorganization of α-Hemoglobin. Journal of Biological Chemistry, 2009, 284, 29462-29469.	1.6	19
131	Pulmonary effects of inhaled diesel exhaust in aged mice. Toxicology and Applied Pharmacology, 2009, 241, 283-293.	1.3	29
132	SP-D-Dependent Regulation of NO Metabolism in Lipopolysaccharide-Stimulated Peritoneal Macrophages. Bulletin of Experimental Biology and Medicine, 2009, 147, 415-420.	0.3	6
133	Nitrite, NO and hypoxic vasodilation. British Journal of Pharmacology, 2009, 158, 1653-1654.	2.7	19
134	Analysis of human α globin gene mutations that impair binding to the α hemoglobin stabilizing protein. Blood, 2009, 113, 5961-5969.	0.6	39
135	Expression of nitric oxide synthases and endogenous NO metabolism in bronchopulmonary dysplasia. Pediatric Pulmonology, 2008, 43, 703-709.	1.0	16
136	Plasma Biomarkers of Oxidative Stress: Relationship to Lung Disease and Inhaled Nitric Oxide Therapy in Premature Infants. Pediatrics, 2008, 121, 555-561.	1.0	56
137	S-Nitrosylation of Surfactant Protein-D Controls Inflammatory Function. PLoS Biology, 2008, 6, e266.	2.6	134
138	Selective Inhibition of Inducible NO Synthase Activity In Vivo Reverses Inflammatory Abnormalities in Surfactant Protein D-Deficient Mice. Journal of Immunology, 2007, 179, 8090-8097.	0.4	40
139	An erythroid chaperone that facilitates folding of α-globin subunits for hemoglobin synthesis. Journal of Clinical Investigation, 2007, 117, 1856-1865.	3.9	96
140	SP-D-deficient mice are resistant to hyperoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L861-L871.	1.3	27
141	S-Nitrosothiol measurements in biological systems. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 851, 140-151.	1.2	102
142	Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection. Free Radical Biology and Medicine, 2007, 42, 132-142.	1.3	104
143	Sâ€Nitrosylation of Surfactant Protein D (SPâ€D) modulates its oligomerization and inflammatory function in vitro and in experimental models of lung injury FASEB Journal, 2007, 21, A552.	0.2	1
144	Hormonal regulation of alveolarization: structure-function correlation. Respiratory Research, 2006, 7, 47.	1.4	16

#	Article	IF	CITATIONS
145	NO, SNO, and hemoglobin: lessons in complexity. Blood, 2006, 108, 3224-3225.	0.6	5
146	Total nitrogen oxide following exercise testing reflects endothelial function and discriminates health status. Free Radical Biology and Medicine, 2006, 41, 740-747.	1.3	23
147	Photoprotection of Parenteral Nutrition Enhances Advancement of Minimal Enteral Nutrition in Preterm Infants. Seminars in Perinatology, 2006, 30, 139-145.	1.1	31
148	The Biological Chemistry of Nitric Oxide as It Pertains to the Extrapulmonary Effects of Inhaled Nitric Oxide. Proceedings of the American Thoracic Society, 2006, 3, 150-152.	3.5	24
149	Inositols prevent and reverse endothelial dysfunction in diabetic rat and rabbit vasculature metabolically and by scavenging superoxide. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 218-223.	3.3	98
150	Biochemical Fates of Î \pm Hemoglobin Bound to Î \pm Hemoglobin-stabilizing Protein AHSP. Journal of Biological Chemistry, 2006, 281, 32611-32618.	1.6	37
151	Alpha Hemoglobin Stabilizing Protein (AHSP) Optimizes Hemoglobin A Synthesis by Maintaining a Pool of Viable Alpha Clobin Subunits Blood, 2006, 108, 650-650.	0.6	Ο
152	A Method to Attenuate Pneumoperitoneum-Induced Reductions in Splanchnic Blood Flow. Annals of Surgery, 2005, 241, 256-261.	2.1	29
153	Pathophysiological functions of nitric oxide-mediated protein modifications. Toxicology, 2005, 208, 299-303.	2.0	71
154	Role of Alpha Hemoglobin-Stabilizing Protein in Normal Erythropoiesis and β-Thalassemia. Annals of the New York Academy of Sciences, 2005, 1054, 103-117.	1.8	41
155	Structure of oxidized α-haemoglobin bound to AHSP reveals a protective mechanism for haem. Nature, 2005, 435, 697-701.	13.7	102
156	Regional and whole-body markers of nitric oxide production following hyperemic stimuli. Free Radical Biology and Medicine, 2005, 38, 1164-1169.	1.3	49
157	Invertebrate hemoglobins and nitric oxide: How heme pocket structure controls reactivity. Journal of Inorganic Biochemistry, 2005, 99, 903-911.	1.5	18
158	Nitric Oxide, Hemoglobin, and Hypoxic Vasodilation. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 479-482.	1.4	19
159	Alveolar Surfactant Protein D Content Modulates Bleomycin-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 869-877.	2.5	48
160	Hemoglobin conformation couples erythrocyte S-nitrosothiol content to O2 gradients. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5709-5714.	3.3	187
161	A nitric oxide processing defect of red blood cells created by hypoxia: Deficiency of S-nitrosohemoglobin in pulmonary hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14801-14806.	3.3	123
162	The Role of Alpha Hemoglobin Stabilizing Protein (AHSP) in the Formation of Hemoglobin A Blood, 2005, 106, 3639-3639.	0.6	5

#	Article	IF	CITATIONS
163	Surfactant Protein-D, a Mediator of Innate Lung Immunity, Alters the Products of Nitric Oxide Metabolism. American Journal of Respiratory Cell and Molecular Biology, 2004, 30, 271-279.	1.4	52
164	Immunohistochemical Detection of <i>S</i> -Nitrosylated Proteins. , 2004, 279, 167-172.		16
165	Delayed Clearance ofPneumocystis cariniiInfection, Increased Inflammation, and Altered Nitric Oxide Metabolism in Lungs of Surfactant Protein–D Knockout Mice. Journal of Infectious Diseases, 2004, 189, 1528-1539.	1.9	79
166	NO and superoxide: Opposite ends of the seesaw in cardiac contractility. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16403-16404.	3.3	20
167	Enhanced Lung Injury and Delayed Clearance of Pneumocystis carinii in Surfactant Protein A-Deficient Mice: Attenuation of Cytokine Responses and Reactive Oxygen-Nitrogen Species. Infection and Immunity, 2004, 72, 6002-6011.	1.0	68
168	S-Nitrosohemoglobin: an allosteric mediator of NO group function in mammalian vasculature. Free Radical Biology and Medicine, 2004, 37, 442-453.	1.3	26
169	Biological significance of nitric oxide-mediated protein modifications. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L262-L268.	1.3	309
170	Molecular Mechanism of AHSP-Mediated Stabilization of $\hat{l}\pm$ -Hemoglobin. Cell, 2004, 119, 629-640.	13.5	137
171	Long-term Intermittent Hypoxia in Mice: Protracted Hypersomnolence with Oxidative Injury to Sleep-Wake Brain Regions. Sleep, 2004, 27, 194-201.	0.6	309
172	Loss of α-hemoglobin–stabilizing protein impairs erythropoiesis and exacerbates β-thalassemia. Journal of Clinical Investigation, 2004, 114, 1457-1466.	3.9	138
173	Red Blood Cell S-Nitrosohemoglobin Deficiency in Pulmonary Arterial Hypertension Blood, 2004, 104, 1583-1583.	0.6	0
174	Super-SOD: superoxide dismutase chimera fights off inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L915-L916.	1.3	6
175	Routes to S-nitroso-hemoglobin formation with heme redox and preferential reactivity in the subunits. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 461-466.	3.3	202
176	Biochemical Regulation of Nitric Oxide Cytotoxicity. , 2002, , 175-187.		2
177	Inhaled ethyl nitrite gas for persistent pulmonary hypertension of the newborn. Lancet, The, 2002, 360, 141-143.	6.3	126
178	Inhaled ethyl nitrite gas for persistent pulmonary hypertension in infants. Lancet, The, 2002, 360, 2077.	6.3	1
179	Basal and Stimulated Protein S-Nitrosylation in Multiple Cell Types and Tissues. Journal of Biological Chemistry, 2002, 277, 9637-9640.	1.6	269
180	NO running on MT: regulation of zinc homeostasis by interaction of nitric oxide with metallothionein. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L183-L184.	1.3	12

#	Article	IF	CITATIONS
181	Nitric oxide in the human respiratory cycle. Nature Medicine, 2002, 8, 711-717.	15.2	445
182	S-nitrosothiol repletion by an inhaled gas regulates pulmonary function. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5792-5797.	3.3	73
183	Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Research Reviews, 2001, 36, 1-22.	9.1	474
184	Nitric oxide chemistry and cellular signaling. Journal of Cellular Physiology, 2001, 187, 277-282.	2.0	140
185	Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10108-10112.	3.3	154
186	NITRIC OXIDE AND PHYSIOLOGICAL SYSTEMS. Medicine and Science in Sports and Exercise, 2001, 33, S1.	0.2	0
187	Two distinct mechanisms of nitric oxide-mediated neuronal cell death show thiol dependency. American Journal of Physiology - Cell Physiology, 2000, 278, C1099-C1107.	2.1	32
188	Immunohistochemical Localization of Protein 3-Nitrotyrosine and S-nitrosocysteine in a Murine Model of Inhaled Nitric Oxide Therapy. Pediatric Research, 2000, 47, 798-805.	1.1	36
189	The Respiratory Cycle. , 2000, , 243-249.		Ο
190	Immunotargeting of glucose oxidase: intracellular production of H ₂ O ₂ and endothelial oxidative stress. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L271-L281.	1.3	18
191	The oxyhemoglobin reaction of nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9027-9032.	3.3	387
192	Ascaris haemoglobin is a nitric oxide-activated â€~deoxygenase'. Nature, 1999, 401, 497-502.	13.7	215
193	Fas-Induced Caspase Denitrosylation. Science, 1999, 284, 651-654.	6.0	720
194	[38] Detection of reactive nitrogen species using 2,7-dichlorodihydrfluorescein and dihydrorhodamine 123. Methods in Enzymology, 1999, 301, 367-373.	0.4	139
195	Ancient origins of nitric oxide signaling in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14206-14207.	3.3	77
196	The Determination of Nitrotyrosine Residues in Proteins. , 1998, 100, 291-300.		15
197	Reactions between nitric oxide and haemoglobin under physiological conditions. Nature, 1998, 391, 169-173.	13.7	556
198	Nitrosative stress: Metabolic pathway involving the flavohemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14100-14105	3.3	269

#	Article	IF	CITATIONS
199	Nitric oxide and peroxynitrite-mediated pulmonary cell death. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L112-L118.	1.3	34
200	Pathophysiological Reactivities of Nitric Oxide. , 1998, , 493-504.		0
201	A Novel Reaction Mechanism for the Formation of S-Nitrosothiol in Vivo. Journal of Biological Chemistry, 1997, 272, 2841-2845.	1.6	273
202	Electrochemical Detection of Nitric Oxide in Biological Systems. Microchemical Journal, 1997, 56, 146-154.	2.3	9
203	Reduced ischemia and reperfusion injury following exercise training. Medicine and Science in Sports and Exercise, 1997, 29, 509-516.	0.2	62
204	Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Letters, 1996, 385, 63-66.	1.3	409
205	Carbon Dioxide Enhancement of Peroxynitrite-Mediated Protein Tyrosine Nitration. Archives of Biochemistry and Biophysics, 1996, 333, 42-48.	1.4	304