J M Bowen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7600539/publications.pdf

Version: 2024-02-01

47006 51608 8,287 143 47 86 citations h-index g-index papers 150 150 150 6954 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Smart design approaches for orally administered lipophilic prodrugs to promote lymphatic transport. Journal of Controlled Release, 2022, 341, 676-701.	9.9	16
2	The science of mucositis. Supportive Care in Cancer, 2022, 30, 2915.	2.2	1
3	Oral-Gut Microbiome Axis in the Pathogenesis of Cancer Treatment-Induced Oral Mucositis. Frontiers in Oral Health, 2022, 3, 881949.	3.0	17
4	Antibiotic-Induced Gut Microbiota Depletion Accelerates the Recovery of Radiation-Induced Oral Mucositis in Rats. International Journal of Radiation Oncology Biology Physics, 2022, 113, 845-858.	0.8	7
5	Intestinal toll-like receptor 4 knockout alters the functional capacity of the gut microbiome following irinotecan treatment. Cancer Chemotherapy and Pharmacology, 2022, 89, 275-281.	2.3	4
6	Antibiotic treatment targeting gram negative bacteria prevents neratinib-induced diarrhea in rats. Neoplasia, 2022, 30, 100806.	5.3	5
7	Role of ErbB1 in the Underlying Mechanism of Lapatinib-Induced Diarrhoea: A Review. BioMed Research International, 2022, 2022, 1-13.	1.9	1
8	MASCC/ISOO clinical practice guidelines for the management of mucositis: sub-analysis of current interventions for the management of oral mucositis in pediatric cancer patients. Supportive Care in Cancer, 2021, 29, 3539-3562.	2.2	33
9	Siteâ€specific contribution of Tollâ€like receptor 4 to intestinal homeostasis and inflammatory disease. Journal of Cellular Physiology, 2021, 236, 877-888.	4.1	21
10	Pathophysiology of neratinib-induced diarrhea in male and female rats: microbial alterations a potential determinant. Breast Cancer, 2021, 28, 99-109.	2.9	5
11	Guidelines for reporting on animal fecal transplantation (GRAFT) studies: recommendations from a systematic review of murine transplantation protocols. Gut Microbes, 2021, 13, 1979878.	9.8	38
12	Toll-like receptor 4 (TLR4) antagonists as potential therapeutics for intestinal inflammation. Indian Journal of Gastroenterology, 2021, 40, 5-21.	1.4	38
13	The application of cytokeratin-18 as a biomarker for drug-induced liver injury. Archives of Toxicology, 2021, 95, 3435-3448.	4.2	16
14	Epithelial-Specific TLR4 Knockout Challenges Current Evidence of TLR4 Homeostatic Control of Gut Permeability. Inflammatory Intestinal Diseases, 2021, 6, 199-209.	1.9	4
15	Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers, 2020, 12, 1911.	3.7	22
16	The microbiota-gut-brain axis: An emerging therapeutic target in chemotherapy-induced cognitive impairment. Neuroscience and Biobehavioral Reviews, 2020, 116, 470-479.	6.1	25
17	MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer, 2020, 126, 4423-4431.	4.1	540
18	Diarrhea Induced by Small Molecule Tyrosine Kinase Inhibitors Compared With Chemotherapy: Potential Role of the Microbiome. Integrative Cancer Therapies, 2020, 19, 153473542092849.	2.0	35

#	Article	IF	CITATIONS
19	Prediction of mucositis risk secondary to cancer therapy: a systematic review of current evidence and call to action. Supportive Care in Cancer, 2020, 28, 5059-5073.	2.2	40
20	The GLP-2 analogue elsiglutide reduces diarrhoea caused by the tyrosine kinase inhibitor lapatinib in rats. Cancer Chemotherapy and Pharmacology, 2020, 85, 793-803.	2.3	14
21	Cytotoxic Effects of the Dual ErbB Tyrosine Kinase Inhibitor, Lapatinib, on Walker 256 Rat Breast Tumour and IEC-6 Rat Normal Small Intestinal Cell Lines. Biomedicines, 2020, 8, 2.	3.2	8
22	Serum outperforms plasma in small extracellular vesicle microRNA biomarker studies of adenocarcinoma of the esophagus. World Journal of Gastroenterology, 2020, 26, 2570-2583.	3.3	16
23	The pathogenesis of mucositis: updated perspectives and emerging targets. Supportive Care in Cancer, 2019, 27, 4023-4033.	2.2	106
24	Systematic review of agents for the management of cancer treatment-related gastrointestinal mucositis and clinical practice guidelines. Supportive Care in Cancer, 2019, 27, 4011-4022.	2.2	51
25	Use of zebrafish to model chemotherapy and targeted therapy gastrointestinal toxicity. Experimental Biology and Medicine, 2019, 244, 1178-1185.	2.4	10
26	Gut microbiota: implications for radiotherapy response and radiotherapy-induced mucositis. Expert Review of Gastroenterology and Hepatology, 2019, 13, 485-496.	3.0	51
27	Acute Colitis Drives Tolerance by Persistently Altering the Epithelial Barrier and Innate and Adaptive Immunity. Inflammatory Bowel Diseases, 2019, 25, 1196-1207.	1.9	10
28	The bidirectional interaction of the gut microbiome and the innate immune system: Implications for chemotherapyâ€induced gastrointestinal toxicity. International Journal of Cancer, 2019, 144, 2365-2376.	5.1	48
29	Toll-like receptor/interleukin-1 domain innate immune signalling pathway genetic variants are candidate predictors for severe gastrointestinal toxicity risk following 5-fluorouracil-based chemotherapy. Cancer Chemotherapy and Pharmacology, 2019, 83, 217-236.	2.3	4
30	Amitriptyline prevents CPT-11-induced early-onset diarrhea and colonic apoptosis without reducing overall gastrointestinal damage in a rat model of mucositis. Supportive Care in Cancer, 2019, 27, 2313-2320.	2.2	8
31	Targeting neratinib-induced diarrhea with budesonide and colesevelam in a rat model. Cancer Chemotherapy and Pharmacology, 2019, 83, 531-543.	2.3	13
32	Individual or combination treatments with lapatinib and paclitaxel cause potential bone loss and bone marrow adiposity in rats. Journal of Cellular Biochemistry, 2019, 120, 4180-4191.	2.6	3
33	Intestinal accumulation of silica particles in a rat model of dextran sulfate sodium-induced colitis. Annals of Gastroenterology, 2019, 32, 584-592.	0.6	2
34	Prophylactic probiotics for cancer therapy-induced diarrhoea: a meta-analysis. Current Opinion in Supportive and Palliative Care, 2018, 12, 187-197.	1.3	43
35	Dacomitinibâ€induced diarrhea: Targeting chloride secretion with crofelemer. International Journal of Cancer, 2018, 142, 369-380.	5.1	18
36	Selective MMP Inhibition, Using AZD3342, to Reduce Gastrointestinal Toxicity and Enhance Chemoefficacy in a Rat Model. Chemotherapy, 2018, 63, 284-292.	1.6	5

#	Article	IF	Citations
37	Role of toll-like receptor 4 (TLR4)-mediated interleukin-6 (IL-6) production in chemotherapy-induced mucositis. Cancer Chemotherapy and Pharmacology, 2018, 82, 31-37.	2.3	17
38	Matrix metalloproteinase expression is altered in the small and large intestine following fractionated radiation in vivo. Supportive Care in Cancer, 2018, 26, 3873-3882.	2.2	7
39	Colonic migrating motor complexes are inhibited in acute tri-nitro benzene sulphonic acid colitis. PLoS ONE, 2018, 13, e0199394.	2.5	14
40	Vascular endothelial growth factor (VEGF), transforming growth factor beta (TGF \hat{I}^2), angiostatin, and endostatin are increased in radiotherapy-induced gastrointestinal toxicity. International Journal of Radiation Biology, 2018, 94, 645-655.	1.8	6
41	Routine assessment of the gut microbiome to promote preclinical research reproducibility and transparency. Gut, 2017, 66, 1869-1871.	12.1	3
42	Cancer treatment-related gastrointestinal symptoms. Current Opinion in Supportive and Palliative Care, 2017, 11, 118-119.	1.3	0
43	Fractionated abdominal irradiation induces intestinal microvascular changes in an in vivo model of radiotherapy-induced gut toxicity. Supportive Care in Cancer, 2017, 25, 1973-1983.	2.2	14
44	Dacomitinibâ€induced diarrhoea is associated with altered gastrointestinal permeability and disruption in ileal histology in rats. International Journal of Cancer, 2017, 140, 2820-2829.	5.1	27
45	Advances in the understanding and management of mucositis during stem cell transplantation. Current Opinion in Supportive and Palliative Care, 2017, 11, 341-346.	1.3	32
46	Potential safety concerns of TLR4 antagonism with irinotecan: a preclinical observational report. Cancer Chemotherapy and Pharmacology, 2017, 79, 431-434.	2.3	10
47	Irinotecan-induced mucositis: the interactions and potential role of GLP-2 analogues. Cancer Chemotherapy and Pharmacology, 2017, 79, 233-249.	2.3	14
48	Irinotecan-induced toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses. Pharmacogenomics Journal, 2017, 17, 21-28.	2.0	51
49	Cell adhesion molecules are altered during irinotecan-induced mucositis: a qualitative histopathological study. Supportive Care in Cancer, 2017, 25, 391-398.	2.2	4
50	Gastrointestinal toxicities of first and second-generation small molecule human epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Current Opinion in Supportive and Palliative Care, 2016, 10, 152-156.	1.3	6
51	Tight junction defects are seen in the buccal mucosa of patients receiving standard dose chemotherapy for cancer. Supportive Care in Cancer, 2016, 24, 1779-1788.	2.2	16
52	Irinotecan-Induced Gastrointestinal Dysfunction and Pain Are Mediated by Common TLR4-Dependent Mechanisms. Molecular Cancer Therapeutics, 2016, 15, 1376-1386.	4.1	114
53	A novel <i>iin vitro</i> platform for the study of SN38-induced mucosal damage and the development of Toll-like receptor 4-targeted therapeutic options. Experimental Biology and Medicine, 2016, 241, 1386-1394.	2.4	8
54	Methotrexate-induced toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses. Cancer Chemotherapy and Pharmacology, 2016, 78, 27-39.	2.3	53

#	Article	IF	Citations
55	TLR4-Dependent Claudin-1 Internalization and Secretagogue-Mediated Chloride Secretion Regulate Irinotecan-Induced Diarrhea. Molecular Cancer Therapeutics, 2016, 15, 2767-2779.	4.1	38
56	Cytokineâ€mediated blood brain barrier disruption as a conduit for cancer/chemotherapyâ€associated neurotoxicity and cognitive dysfunction. International Journal of Cancer, 2016, 139, 2635-2645.	5.1	108
57	Patient preferences on the integration of complementary therapy with conventional cancer care. Asia-Pacific Journal of Clinical Oncology, 2016, 12, e311-e318.	1.1	8
58	Fluoropyrimidine and platinum toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses. Pharmacogenomics, 2016, 17, 435-451.	1.3	37
59	Chemotherapy-induced gut toxicity and pain: involvement of TLRs. Supportive Care in Cancer, 2016, 24, 2251-2258.	2.2	22
60	Editorial Comment. Current Opinion in Supportive and Palliative Care, 2015, 9, 155-156.	1.3	1
61	Involvement of matrix metalloproteinases (<scp>MMP</scp> â€3 and <scp>MMP</scp> â€9) in the pathogenesis of irinotecanâ€induced oral mucositis. Journal of Oral Pathology and Medicine, 2015, 44, 459-467.	2.7	29
62	Toll-like receptor 4 signaling: A common biological mechanism of regimen-related toxicities. Cancer Treatment Reviews, 2015, 41, 122-128.	7.7	34
63	Predictive model for risk of severe gastrointestinal toxicity following chemotherapy using patient immune genetics and type of cancer: a pilot study. Supportive Care in Cancer, 2015, 23, 1233-1236.	2.2	18
64	Pre-therapy mRNA expression of TNF is associated with regimen-related gastrointestinal toxicity in patients with esophageal cancer: a pilot study. Supportive Care in Cancer, 2015, 23, 3165-3172.	2.2	6
65	Circulating Serum Exosomal miRNAs As Potential Biomarkers for Esophageal Adenocarcinoma. Journal of Gastrointestinal Surgery, 2015, 19, 1208-1215.	1.7	120
66	ErbB small molecule tyrosine kinase inhibitor (TKI) induced diarrhoea: Chloride secretion as a mechanistic hypothesis. Cancer Treatment Reviews, 2015, 41, 646-652.	7.7	53
67	What are the predictive factors in the risk and severity of chemotherapy-induced gastrointestinal toxicity?. Future Oncology, 2015, 11, 2367-2370.	2.4	13
68	Irinotecan disrupts tight junction proteins within the gut. Cancer Biology and Therapy, 2014, 15, 236-244.	3.4	67
69	Development of the Rat Model of Lapatinib-Induced Diarrhoea. Scientifica, 2014, 2014, 1-6.	1.7	13
70	TLR4/PKCâ€mediated tight junction modulation: A clinical marker of chemotherapyâ€induced gut toxicity?. International Journal of Cancer, 2014, 135, 2483-2492.	5.1	35
71	MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer, 2014, 120, 1453-1461.	4.1	838
72	New pharmacotherapy options for chemotherapy-induced alimentary mucositis. Expert Opinion on Biological Therapy, 2014, 14, 347-354.	3.1	13

#	Article	IF	CITATIONS
73	Determining the mechanisms of lapatinib-induced diarrhoea using a rat model. Cancer Chemotherapy and Pharmacology, 2014, 74, 617-627.	2.3	25
74	Systematic review of miscellaneous agents for the management of oral mucositis in cancer patients. Supportive Care in Cancer, 2013, 21, 3223-3232.	2.2	50
75	Emerging evidence on the pathobiology of mucositis. Supportive Care in Cancer, 2013, 21, 3233-3241.	2.2	145
76	Systematic review of antimicrobials, mucosal coating agents, anesthetics, and analgesics for the management of oral mucositis in cancer patients. Supportive Care in Cancer, 2013, 21, 3191-3207.	2.2	137
77	Systematic review of natural agents for the management of oral mucositis in cancer patients. Supportive Care in Cancer, 2013, 21, 3209-3221.	2.2	95
78	Biomarkers of chemotherapy-induced diarrhoea: a clinical study of intestinal microbiome alterations, inflammation and circulating matrix metalloproteinases. Supportive Care in Cancer, 2013, 21, 1843-1852.	2.2	103
79	Systematic review of basic oral care for the management of oral mucositis in cancer patients. Supportive Care in Cancer, 2013, 21, 3165-3177.	2.2	194
80	Systematic review of oral cryotherapy for management of oral mucositis caused by cancer therapy. Supportive Care in Cancer, 2013, 21, 327-332.	2.2	113
81	Methodology for the MASCC/ISOO Mucositis Clinical Practice Guidelines Update. Supportive Care in Cancer, 2013, 21, 303-308.	2.2	42
82	Development of the MASCC/ISOO Clinical Practice Guidelines for Mucositis: considerations underlying the process. Supportive Care in Cancer, 2013, 21, 309-312.	2.2	30
83	Systematic review of cytokines and growth factors for the management of oral mucositis in cancer patients. Supportive Care in Cancer, 2013, 21, 343-355.	2.2	111
84	Systematic review of laser and other light therapy for the management of oral mucositis in cancer patients. Supportive Care in Cancer, 2013, 21, 333-341.	2.2	193
85	Systematic review of amifostine for the management of oral mucositis in cancer patients. Supportive Care in Cancer, 2013, 21, 357-364.	2.2	89
86	Systematic review of agents for the management of gastrointestinal mucositis in cancer patients. Supportive Care in Cancer, 2013, 21, 313-326.	2.2	177
87	Emerging evidence on the pathobiology of mucositis. Supportive Care in Cancer, 2013, 21, 2075-2083.	2.2	121
88	Systematic review of anti-inflammatory agents for the management of oral mucositis in cancer patients. Supportive Care in Cancer, 2013, 21, 3179-3189.	2.2	95
89	Chemotherapy-induced mucosal barrier dysfunction. Current Opinion in Supportive and Palliative Care, 2013, 7, 155-161.	1.3	51
90	Mechanisms of TKI-induced diarrhea in cancer patients. Current Opinion in Supportive and Palliative Care, 2013, 7, 162-167.	1.3	51

#	Article	IF	CITATIONS
91	Investigation of Effect of Nutritional Drink on Chemotherapy-Induced Mucosal Injury and Tumor Growth in an Established Animal Model. Nutrients, 2013, 5, 3948-3963.	4.1	10
92	Development of a rat model of oral small molecule receptor tyrosine kinase inhibitor-induced diarrhea. Cancer Biology and Therapy, 2012, 13, 1269-1275.	3.4	34
93	Mouth care protocol for oral mucositis. Journal of Oncology Pharmacy Practice, 2012, 18, 158-158.	0.9	0
94	Anti-Inflammatory Cytokines: Important Immunoregulatory Factors Contributing to Chemotherapy-Induced Gastrointestinal Mucositis. Chemotherapy Research and Practice, 2012, 2012, 1-11.	1.6	86
95	Chemotherapy-induced gut toxicity: are alterations to intestinal tight junctions pivotal?. Cancer Chemotherapy and Pharmacology, 2012, 70, 627-635.	2.3	35
96	Biomarkers of Small Intestinal Mucosal Damage Induced by Chemotherapy: An Emerging Role for the 13C Sucrose Breath Test. The Journal of Supportive Oncology, 2012, 11, 61-7.	2.3	6
97	Noncardiac Vascular Toxicities of Vascular Endothelial Growth Factor Inhibitors in Advanced Cancer: A Review. Oncologist, 2011, 16, 432-444.	3.7	80
98	Selection of Housekeeping Genes for Gene Expression Studies in a Rat Model of Irinotecan-Induced Mucositis. Chemotherapy, 2011, 57, 43-53.	1.6	12
99	Biomarkers of regimen-related mucosal injury. Cancer Treatment Reviews, 2011, 37, 487-493.	7.7	41
100	Animal Models of Mucositis: Implications for Therapy. The Journal of Supportive Oncology, 2011, 9, 161-168.	2.3	57
101	Irinotecanâ€induced alterations in intestinal cell kinetics and extracellular matrix component expression in the dark agouti rat. International Journal of Experimental Pathology, 2011, 92, 357-365.	1.3	34
102	Kinetics and regional specificity of irinotecan-induced gene expression in the gastrointestinal tract. Toxicology, 2010, 269, 1-12.	4.2	11
103	Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis. Radiation Oncology, 2010, 5, 22.	2.7	109
104	Matrix metalloproteinases are possible mediators for the development of alimentary tract mucositis in the dark agouti rat. Experimental Biology and Medicine, 2010, 235, 1244-1256.	2.4	55
105	Trastuzumab induces gastrointestinal side effects in HER2-overexpressing breast cancer patients. Investigational New Drugs, 2009, 27, 173-178.	2.6	28
106	Is the pathobiology of chemotherapy-induced alimentary tract mucositis influenced by the type of mucotoxic drug administered?. Cancer Chemotherapy and Pharmacology, 2009, 63, 239-251.	2.3	147
107	lrinotecan-induced mucositis is associated with changes in intestinal mucins. Cancer Chemotherapy and Pharmacology, 2009, 64, 123-132.	2.3	70
108	Matrix metalloproteinases: key regulators in the pathogenesis of chemotherapy-induced mucositis?. Cancer Chemotherapy and Pharmacology, 2009, 64, 1-9.	2.3	35

#	Article	IF	CITATIONS
109	Irinotecanâ€induced mucositis manifesting as diarrhoea corresponds with an amended intestinal flora and mucin profile. International Journal of Experimental Pathology, 2009, 90, 489-499.	1.3	131
110	Gastrointestinal Microflora and Mucins May Play a Critical Role in the Development of 5-Fluorouracil-Induced Gastrointestinal Mucositis. Experimental Biology and Medicine, 2009, 234, 430-441.	2.4	182
111	Chemotherapy-Induced Modifications to Gastrointestinal Microflora: Evidence and Implications of Change. Current Drug Metabolism, 2009, 10, 79-83.	1.2	96
112	HER2 Targeted Therapies for Cancer and the Gastrointestinal Tract. Current Drug Targets, 2009, 10, 537-542.	2.1	22
113	Characterisation of mucosal changes in the alimentary tract following administration of irinotecan: implications for the pathobiology of mucositis. Cancer Chemotherapy and Pharmacology, 2008, 62, 33-41.	2.3	179
114	Technological advances in mucositis research: New insights and new issues. Cancer Treatment Reviews, 2008, 34, 476-482.	7.7	14
115	Emerging drugs for chemotherapy-induced mucositis. Expert Opinion on Emerging Drugs, 2008, 13, 511-522.	2.4	41
116	Serum levels of NF- \hat{l}° B and pro-inflammatory cytokines following administration of mucotoxic drugs. Cancer Biology and Therapy, 2008, 7, 1139-1145.	3.4	145
117	Faecal microflora and \hat{l}^2 -glucuronidase expression are altered in an irinotecan-induced diarrhea model in rats. Cancer Biology and Therapy, 2008, 7, 1919-1925.	3.4	150
118	Prevention and Treatment of Regimen-Related Mucosal Toxicity. Recent Patents on Anti-Cancer Drug Discovery, 2008, 3, 68-75.	1.6	3
119	New Pathways for Alimentary Mucositis. Journal of Oncology, 2008, 2008, 1-7.	1.3	21
120	VSL#3 probiotic treatment reduces chemotherapy-induced diarrhoea and weight loss. Cancer Biology and Therapy, 2007, 6, 1445-1450.	3.4	156
121	Velafermin improves gastrointestinal mucositis following irinotecan treatment in tumor-bearing DA rats. Cancer Biology and Therapy, 2007, 6, 541-547.	3.4	15
122	A novel animal model to investigate fractionated radiotherapy-induced alimentary mucositis: the role of apoptosis, p53, nuclear factor-κB, COX-1, and COX-2. Molecular Cancer Therapeutics, 2007, 6, 2319-2327.	4.1	57
123	Establishment of a Single-Dose Irinotecan Model of Gastrointestinal Mucositis. Chemotherapy, 2007, 53, 360-369.	1.6	61
124	Role of p53 in irinotecan-induced intestinal cell death and mucosal damage. Anti-Cancer Drugs, 2007, 18, 197-210.	1.4	22
125	The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: Pathobiology, animal models and cytotoxic drugs. Cancer Treatment Reviews, 2007, 33, 448-460.	7.7	235
126	Gene expression analysis of multiple gastrointestinal regions reveals activation of common cell regulatory pathways following cytotoxic chemotherapy. International Journal of Cancer, 2007, 121, 1847-1856.	5.1	47

#	Article	IF	Citations
127	Chemotherapy-induced diarrhea is associated with changes in the luminal environment in the DA rat. Experimental Biology and Medicine, 2007, 232, 96-106.	2.4	41
128	Chemotherapy-induced mucositis: the role of gastrointestinal microflora and mucins in the luminal environment. The Journal of Supportive Oncology, 2007, 5, 259-67.	2.3	40
129	Radiation therapy-induced mucositis: Relationships between fractionated radiation, NF-κB, COX-1, and COX-2. Cancer Treatment Reviews, 2006, 32, 645-651.	7.7	44
130	Apoptosis occurs early in the basal layer of the oral mucosa following cancer chemotherapy. Asia-Pacific Journal of Clinical Oncology, 2006, 2, 39-49.	1.1	24
131	Intestinal mucositis: the role of the Bcl-2 family, p53 and caspases in chemotherapy-induced damage. Supportive Care in Cancer, 2006, 14, 713-731.	2.2	109
132	New thoughts on the pathobiology of regimen-related mucosal injury. Supportive Care in Cancer, 2006, 14, 516-518.	2.2	47
133	Irinotecan changes gene expression in the small intestine of the rat with breast cancer. Cancer Chemotherapy and Pharmacology, 2006, 59, 337-348.	2.3	38
134	Cytotoxic chemotherapy upregulates pro-poptotic Bax and Bak in the small intestine of rats and humans. Pathology, 2005, 37, 56-62.	0.6	70
135	Nuclear factor κB (NFκB) and cyclooxygenase-2 (Cox-2) expression in the irradiated colorectum is associated with subsequent histopathological changes. International Journal of Radiation Oncology Biology Physics, 2005, 63, 1295-1303.	0.8	82
136	Do Serum Levels of Eosinophil Granule-derived Protein Change in Patients Undergoing Pelvic Radiotherapy?. Clinical Oncology, 2005, 17, 382-384.	1.4	5
137	Effect of calcium and dairy foods in high protein, energy-restricted diets on weight loss and metabolic parameters in overweight adults. International Journal of Obesity, 2005, 29, 957-965.	3.4	118
138	Palifermin reduces diarrhea and increases survival following irinotecan treatment in tumorâ€bearing DA rats. International Journal of Cancer, 2005, 116, 464-470.	5.1	72
139	Relationship between dose of methotrexate, apoptosis, p53/p21 expression and intestinal crypt proliferation in the rat. Clinical and Experimental Medicine, 2005, 4, 188-195.	3.6	46
140	Irinotecan causes severe small intestinal damage, as well as colonic damage, in the rat with implanted breast cancer. Journal of Gastroenterology and Hepatology (Australia), 2003, 18, 1095-1100.	2.8	165
141	Use of Project Teams in Preclinical Development. , 0, , 65-79.		0
142	Relationship between Animal Models and Clinical Research: Using Mucositis as a Practical Example. , 0, , 81-108.		0
143	Contribution of TLR4 to colorectal tumor microenvironment, etiology and prognosis. Journal of Cancer Research and Clinical Oncology, 0, , .	2.5	0