
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7600312/publications.pdf Version: 2024-02-01

ΔΝΙΠΡΕΛ Ε ΡΡΟΤΛ

#	Article	IF	CITATIONS
1	Molecular Mechanism of Action of Microtubule-Stabilizing Anticancer Agents. Science, 2013, 339, 587-590.	12.6	436
2	Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. Trends in Cell Biology, 2018, 28, 776-792.	7.9	340
3	The Novel Microtubule-Destabilizing Drug BAL27862 Binds to the Colchicine Site of Tubulin with Distinct Effects on Microtubule Organization. Journal of Molecular Biology, 2014, 426, 1848-1860.	4.2	240
4	A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13817-13821.	7.1	229
5	Crystal structure of reovirus attachment protein sigma1 reveals evolutionary relationship to adenovirus fiber. EMBO Journal, 2002, 21, 1-11.	7.8	214
6	Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nature Communications, 2017, 8, 542.	12.8	203
7	Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2017, 68, 210-223.e6.	9.7	197
8	Structural basis of tubulin tyrosination by tubulin tyrosine ligase. Journal of Cell Biology, 2013, 200, 259-270.	5.2	189
9	Structural Basis of cis- and trans-Combretastatin Binding to Tubulin. CheM, 2017, 2, 102-113.	11.7	164
10	Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proceedings of the United States of America, 2010, 107, 2425-2430.	7.1	160
11	Structural Basis of Microtubule Stabilization by Laulimalide and Pelorusideâ€A. Angewandte Chemie - International Edition, 2014, 53, 1621-1625.	13.8	154
12	Crystal structure of human junctional adhesion molecule 1: Implications for reovirus binding. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5366-5371.	7.1	144
13	Structure–function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 567-580.	2.3	128
14	Structural Basis of Microtubule Destabilization by Potent Auristatin Anti-Mitotics. PLoS ONE, 2016, 11, e0160890.	2.5	121
15	Fast native-SAD phasing for routine macromolecular structure determination. Nature Methods, 2015, 12, 131-133.	19.0	120
16	Termination of Protofilament Elongation by Eribulin Induces Lattice Defects that Promote Microtubule Catastrophes. Current Biology, 2016, 26, 1713-1721.	3.9	97
17	Quinazolinone-Based Anticancer Agents: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Tubulin Co-crystal Structure. Journal of Medicinal Chemistry, 2018, 61, 1031-1044.	6.4	91
18	Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nature Communications, 2017, 8, 14683.	12.8	88

#	Article	IF	CITATIONS
19	Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12960-12965.	7.1	84
20	The crystal structure of human CD21: Implications for Epstein-Barr virus and C3d binding. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10641-10646.	7.1	74
21	Pironetin Binds Covalently to αCys316 and Perturbs a Major Loop and Helix of α-Tubulin to Inhibit Microtubule Formation. Journal of Molecular Biology, 2016, 428, 2981-2988.	4.2	64
22	Triazolopyrimidines Are Microtubule-Stabilizing Agents that Bind the Vinca Inhibitor Site of Tubulin. Cell Chemical Biology, 2017, 24, 737-750.e6.	5.2	58
23	Antivascular and antitumor properties of the tubulin-binding chalcone TUB091. Oncotarget, 2017, 8, 14325-14342.	1.8	50
24	Orf virus VEGFâ€E NZ2 promotes paracellular NRPâ€1/VEGFRâ€2 coreceptor assembly <i>via</i> the peptide RPPR. FASEB Journal, 2008, 22, 3078-3086.	0.5	49
25	Structural Basis of Formation of the Microtubule Minus-End-Regulating CAMSAP-Katanin Complex. Structure, 2018, 26, 375-382.e4.	3.3	47
26	Gatorbulin-1, a distinct cyclodepsipeptide chemotype, targets a seventh tubulin pharmacological site. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47
27	Comprehensive Analysis of Binding Sites in Tubulin. Angewandte Chemie - International Edition, 2021, 60, 13331-13342.	13.8	44
28	Structural model for differential cap maturation at growing microtubule ends. ELife, 2020, 9, .	6.0	44
29	The synthetic diazonamide DZ-2384 has distinct effects on microtubule curvature and dynamics without neurotoxicity. Science Translational Medicine, 2016, 8, 365ra159.	12.4	42
30	High-affinity ligands of the colchicine domain in tubulin based on a structure-guided design. Scientific Reports, 2018, 8, 4242.	3.3	42
31	A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansineÂsite of tubulin. Nature Communications, 2018, 9, 2106.	12.8	41
32	Structural Basis for Universal Corrinoid Recognition by the Cobalamin Transport Protein Haptocorrin. Journal of Biological Chemistry, 2013, 288, 25466-25476.	3.4	37
33	Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends. Structure, 2017, 25, 924-932.e4.	3.3	37
34	A DNA Glycosylase from Pyrobaculum aerophilum with an 8-Oxoguanine Binding Mode and a Noncanonical Helix-Hairpin-Helix Structure. Structure, 2005, 13, 87-98.	3.3	33
35	Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. European Journal of Medicinal Chemistry, 2019, 162, 290-320.	5.5	31
36	Crystal Structure of the Orf Virus NZ2 Variant of Vascular Endothelial Growth Factor-E. Journal of Biological Chemistry, 2006, 281, 19578-19587.	3.4	30

#	Article	IF	CITATIONS
37	Structural Basis of Microtubule Stabilization by Discodermolide. ChemBioChem, 2017, 18, 905-909.	2.6	30
38	Structural Basis of Noscapine Activation for Tubulin Binding. Journal of Medicinal Chemistry, 2020, 63, 8495-8501.	6.4	30
39	Structural basis of katanin p60:p80 complex formation. Scientific Reports, 2017, 7, 14893.	3.3	24
40	VISAGE Reveals a Targetable Mitotic Spindle Vulnerability in Cancer Cells. Cell Systems, 2019, 9, 74-92.e8.	6.2	24
41	Crystal Structure of the Cyclostreptin-Tubulin Adduct: Implications for Tubulin Activation by Taxane-Site Ligands. International Journal of Molecular Sciences, 2019, 20, 1392.	4.1	24
42	Structural Determinants of the Dictyostatin Chemotype for Tubulin Binding Affinity and Antitumor Activity Against Taxane- and Epothilone-Resistant Cancer Cells. ACS Omega, 2016, 1, 1192-1204.	3.5	22
43	Pharmaceutical-Grade Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2020, 79, 191-198.e3.	9.7	22
44	Zampanolide Binding to Tubulin Indicates Cross-Talk of Taxane Site with Colchicine and Nucleotide Sites. Journal of Natural Products, 2018, 81, 494-505.	3.0	15
45	Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. DNA Repair, 2009, 8, 857-864.	2.8	13
46	Preclinical and Early Clinical Development of PTC596, a Novel Small-Molecule Tubulin-Binding Agent. Molecular Cancer Therapeutics, 2021, 20, 1846-1857.	4.1	13
47	Rational Design of a Novel Tubulin Inhibitor with a Unique Mechanism of Action. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
48	Crystal Structure of a Heterotetrameric Katanin p60:p80 Complex. Structure, 2019, 27, 1375-1383.e3.	3.3	11
49	A Molecular Dynamics Study of Reovirus Attachment Protein σ1 Reveals Conformational Changes in σ1 Structure. Biophysical Journal, 2004, 86, 3423-3431.	0.5	10
50	Sustainable Syntheses of (â^')-Jerantinines A & E and Structural Characterisation of the Jerantinine-Tubulin Complex at the Colchicine Binding Site. Scientific Reports, 2018, 8, 10617.	3.3	10
51	Novel fragment-derived colchicine-site binders as microtubule-destabilizing agents. European Journal of Medicinal Chemistry, 2022, 241, 114614.	5.5	10
52	Structure determination of VEGF-E by sulfur SAD. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1430-1434.	2.5	9
53	Tetrahydroisoquinoline Sulfamates as Potent Microtubule Disruptors: Synthesis, Antiproliferative and Antitubulin Activity of Dichlorobenzyl-Based Derivatives, and a Tubulin Cocrystal Structure. ACS Omega, 2019, 4, 755-764.	3.5	9
54	Alternative folding to a monomer or homopolymer is a common feature of the type 1 pilus subunit FimA from enteroinvasive bacteria. Journal of Biological Chemistry, 2019, 294, 10553-10563.	3.4	7

#	Article	IF	CITATIONS
55	Functional and Structural Insights into a Novel Promiscuous Ketoreductase of the Lugdunomycin Biosynthetic Pathway. ACS Chemical Biology, 2020, 15, 2529-2538.	3.4	7
56	Comprehensive Analysis of Binding Sites in Tubulin. Angewandte Chemie, 2021, 133, 13443-13454.	2.0	7
57	Ectopic positioning of the cell division plane is associated with single amino acid substitutions in the FtsZ-recruiting SsgB in <i>Streptomyces</i> . Open Biology, 2021, 11, 200409.	3.6	6
58	1,3â€Benzodioxoleâ€Modified Noscapine Analogues: Synthesis, Antiproliferative Activity, and Tubulinâ€Bound Structure. ChemMedChem, 2021, 16, 2882-2894.	3.2	6
59	Maytansinol Derivatives: Side Reactions as a Chance for New Tubulin Binders. Chemistry - A European Journal, 2021, 28, e202103520.	3.3	5
60	Structural Basis of Colchicine-Site targeting Acylhydrazones active against Multidrug-Resistant Acute Lymphoblastic Leukemia. IScience, 2019, 21, 95-109.	4.1	4
61	Conformational Properties of the Chemotherapeutic Drug Analogue Epothilone A: How to Model a Flexible Protein Ligand Using Scarcely Available Experimental Data. Journal of Chemical Information and Modeling, 2019, 59, 2218-2230.	5.4	4
62	Structural Refinement of the Tubulin Ligand (+)-Discodermolide to Attenuate Chemotherapy-Mediated Senescence. Molecular Pharmacology, 2020, 98, 156-167.	2.3	4
63	Crystallization Systems for the High-Resolution Structural Analysis of Tubulin–Ligand Complexes. Methods in Molecular Biology, 2022, 2430, 349-374.	0.9	3
64	Rational Design of a Novel Tubulin Inhibitor with a Unique Mechanism of Action. Angewandte Chemie, 2022, 134, .	2.0	1
65	Rücktitelbild: Structural Basis of Microtubule Stabilization by Laulimalide and Pelorusideâ€A (Angew.) Tj ETG	 2q1_1_0.78 2.0	34314 rgBT /(