
Ronald Bontrop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7599899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic evolution of Mhc haplotypes in cynomolgus macaques of different geographic origins. Immunogenetics, 2022, , 1.	2.4	6
2	Medical imaging of pulmonary disease in SARS-CoV-2-exposed non-human primates. Trends in Molecular Medicine, 2022, 28, 123-142.	6.7	10
3	Comparative genetics of KIR haplotype diversity in humans and rhesus macaques: the balancing act. Immunogenetics, 2022, , 1.	2.4	4
4	Brain Inflammation and Intracellular α-Synuclein Aggregates in Macaques after SARS-CoV-2 Infection. Viruses, 2022, 14, 776.	3.3	23
5	Two Human Monoclonal HLA-Reactive Antibodies Cross-React with Mamu-B*008, a Rhesus Macaque MHC Allotype Associated with Control of Simian Immunodeficiency Virus Replication. Journal of Immunology, 2021, 206, 1957-1965.	0.8	1
6	The Post-Acute Phase of SARS-CoV-2 Infection in Two Macaque Species Is Associated with Signs of Ongoing Virus Replication and Pathology in Pulmonary and Extrapulmonary Tissues. Viruses, 2021, 13, 1673.	3.3	28
7	Rapid Characterization of Complex Killer Cell Immunoglobulin-Like Receptor (KIR) Regions Using Cas9 Enrichment and Nanopore Sequencing. Frontiers in Immunology, 2021, 12, 722181.	4.8	15
8	The Genomic Organization of the LILR Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health And Disease. Frontiers in Immunology, 2021, 12, 716289.	4.8	8
9	Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species. Immunogenetics, 2020, 72, 25-36.	2.4	17
10	Fullâ€length MHC class II alleles in three New World monkey species. Hla, 2020, 95, 163-165.	0.6	0
11	Immunogenetics special issue 2020: nomenclature, databases, and bioinformatics in immunogenetics. Immunogenetics, 2020, 72, 1-3.	2.4	1
12	Nomenclature report for killer-cell immunoglobulin-like receptors (KIR) in macaque species: new genes/alleles, renaming recombinant entities and IPD-NHKIR updates. Immunogenetics, 2020, 72, 37-47.	2.4	14
13	The Genetic Mechanisms Driving Diversification of the KIR Gene Cluster in Primates. Frontiers in Immunology, 2020, 11, 582804.	4.8	15
14	Evolution of HLA-F and its orthologues in primate species: a complex tale of conservation, diversification and inactivation. Immunogenetics, 2020, 72, 475-487.	2.4	2
15	How the COVID-19 pandemic highlights the necessity of animal research. Current Biology, 2020, 30, R1014-R1018.	3.9	26
16	Similar patterns of genetic diversity and linkage disequilibrium in Western chimpanzees (Pan) Tj ETQq0 0 0 rgBT BMC Evolutionary Biology, 2020, 20, 119.	/Overlock 3.2	10 Tf 50 147 2
17	Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. International Journal of Immunogenetics, 2020, 47, 243-260.	1.8	24
18	COVID-19 pandemic: is a gender-defined dosage effect responsible for the high mortality rate among males?. Immunogenetics, 2020, 72, 275-277.	2.4	36

#	Article	IF	CITATIONS
19	Unparalleled Rapid Evolution of KIR Genes in Rhesus and Cynomolgus Macaque Populations. Journal of Immunology, 2020, 204, 1770-1786.	0.8	12
20	Differential DNA methylation of vocal and facial anatomy genes in modern humans. Nature Communications, 2020, 11, 1189.	12.8	69
21	Editorial: Comparative Genetics of NK Cell Receptor Families in Relation to MHC Class I Ligands and Their Function. Frontiers in Immunology, 2020, 11, 561.	4.8	Ο
22	The HLA A03 Supertype and Several Pan Species Major Histocompatibility Complex Class I A Allotypes Share a Preference for Binding Positively Charged Residues in the F Pocket: Implications for Controlling Retroviral Infections. Journal of Virology, 2020, 94, .	3.4	2
23	Analysis of macaque BTN3A genes and transcripts in the extended MHC: conserved orthologs of human γδT cell modulators. Immunogenetics, 2019, 71, 545-559.	2.4	3
24	Determining Mhc-DRB profiles in wild populations of three congeneric true lemur species by noninvasive methods. Immunogenetics, 2019, 71, 97-107.	2.4	3
25	Limited MHC class II gene polymorphism in the West African chimpanzee is distributed maximally by haplotype diversity. Immunogenetics, 2019, 71, 13-23.	2.4	8
26	Human and Rhesus MacaqueKIRHaplotypes Defined by Their Transcriptomes. Journal of Immunology, 2018, 200, ji1701480.	0.8	23
27	MHC class I diversity of olive baboons (Papio anubis) unravelled by next-generation sequencing. Immunogenetics, 2018, 70, 439-448.	2.4	8
28	In memoriam Johannes Joseph van Rood (1926–2017). Immunogenetics, 2018, 70, 1-4.	2.4	1
29	Extensive Alternative Splicing of KIR Transcripts. Frontiers in Immunology, 2018, 9, 2846.	4.8	32
30	Cell Type and Species-specific Patterns in Neuronal and Non-neuronal Methylomes of Human and Chimpanzee Cortices. Cerebral Cortex, 2018, 28, 3724-3739.	2.9	7
31	Comparative MHC nomenclature: report from the ISAC/IUIS-VIC committee 2018. Immunogenetics, 2018, 70, 625-632.	2.4	32
32	IPD-MHC: nomenclature requirements for the non-human major histocompatibility complex in the next-generation sequencing era. Immunogenetics, 2018, 70, 619-623.	2.4	40
33	Nomenclature for the KIR of non-human species. Immunogenetics, 2018, 70, 571-583.	2.4	15
34	Does the MHC Confer Protection against Malaria in Bonobos?. Trends in Immunology, 2018, 39, 768-771.	6.8	13
35	A quick and robust MHC typing method for free-ranging and captive primate species. Immunogenetics, 2017, 69, 231-240.	2.4	7
36	Two Orangutan Species Have Evolved Different <i>KIR</i> Alleles and Haplotypes. Journal of Immunology, 2017, 198, 3157-3169.	0.8	13

#	Article	IF	CITATIONS
37	Major histocompatibility complex haplotyping and long-amplicon allele discovery in cynomolgus macaques from Chinese breeding facilities. Immunogenetics, 2017, 69, 211-229.	2.4	40
38	Limited MHC class I intron 2 repertoire variation in bonobos. Immunogenetics, 2017, 69, 677-688.	2.4	15
39	Prof Dr. Johannes Joseph (Jon) van Rood (1926–2017). Human Immunology, 2017, 78, 523-525.	2.4	0
40	A Specialist Macaque MHC Class I Molecule with HLA-B*27–like Peptide-Binding Characteristics. Journal of Immunology, 2017, 199, 3679-3690.	0.8	11
41	RNA editing independently occurs at three mir-376a-1 sites and may compromise the stability of the microRNA hairpin. Gene, 2017, 628, 109-116.	2.2	4
42	AIDS in chimpanzees: the role of MHC genes. Immunogenetics, 2017, 69, 499-509.	2.4	10
43	Foreword: Immunogenetics special issue 2017. Immunogenetics, 2017, 69, 479-480.	2.4	1
44	Non-human primate models for disease and human biology: The impact of the Major Histocompatibility Complex. Drug Discovery Today: Disease Models, 2017, 23, 25-29.	1.2	0
45	The orthologs of HLA-DQ and -DP genes display abundant levels of variability in macaque species. Immunogenetics, 2017, 69, 87-99.	2.4	15
46	Transcription start site profiling of 15 anatomical regions of the Macaca mulatta central nervous system. Scientific Data, 2017, 4, 170163.	5.3	4
47	IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex. Nucleic Acids Research, 2017, 45, D860-D864.	14.5	168
48	No postcopulatory selection against <scp>MHC</scp> â€homozygous offspring: Evidence from a pedigreed captive rhesus macaque colony. Molecular Ecology, 2017, 26, 3785-3793.	3.9	7
49	Spontaneous endometriosis in rhesus macaques: evidence for a genetic association with specific Mamu-A1 alleles. Primate Biology, 2017, 4, 117-125.	1.0	1
50	S0117 Development of the ipd-MHC Database. Journal of Animal Science, 2016, 94, 9-9.	0.5	0
51	Human Oocyte-Derived Methylation Differences Persist in the Placenta Revealing Widespread Transient Imprinting. PLoS Genetics, 2016, 12, e1006427.	3.5	94
52	Fiftyâ€one fullâ€length major histocompatibility complex class II alleles in the olive baboon (<i>Papio) Tj ETQq0</i>	0 0 rgBT /	Ovgrlock 10 T
53	Epigenomic annotation of gene regulatory alterations during evolution of the primate brain. Nature Neuroscience, 2016, 19, 494-503.	14.8	113

⁵⁴Complex MHC Class I Gene Transcription Profiles and Their Functional Impact in Orangutans. Journal
of Immunology, 2016, 196, 750-758.0.815

#	Article	IF	CITATIONS
55	The Time Scale of Recombination Rate Evolution in Great Apes. Molecular Biology and Evolution, 2016, 33, 928-945.	8.9	92
56	Functional Implications of Human-Specific Changes in Great Ape microRNAs. PLoS ONE, 2016, 11, e0154194.	2.5	12
57	Extreme selective sweeps independently targeted the X chromosomes of the great apes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6413-6418.	7.1	75
58	Coâ€evolution of the <scp>MHC</scp> class I and <scp>KIR</scp> gene families in rhesus macaques: ancestry and plasticity. Immunological Reviews, 2015, 267, 228-245.	6.0	35
59	Novel <scp>DRA</scp> alleles extracted from seven macaque cohorts. Tissue Antigens, 2015, 85, 146-148.	1.0	2
60	Origins of De Novo Genes in Human and Chimpanzee. PLoS Genetics, 2015, 11, e1005721.	3.5	123
61	Strong Vaccine-Induced CD8 T-Cell Responses Have Cytolytic Function in a Chimpanzee Clearing HCV Infection. PLoS ONE, 2014, 9, e95103.	2.5	10
62	Widespread differences in cortex DNA methylation of the "language geneâ€∢i>CNTNAP2between humans and chimpanzees. Epigenetics, 2014, 9, 533-545.	2.7	30
63	High diversity of MIC genes in non-human primates. Immunogenetics, 2014, 66, 581-587.	2.4	13
64	Differential recombination dynamics within the MHC of macaque species. Immunogenetics, 2014, 66, 535-544.	2.4	14
65	Strong male bias drives germline mutation in chimpanzees. Science, 2014, 344, 1272-1275.	12.6	146
66	The HIV-1 pandemic: does the selective sweep in chimpanzees mirror humankind's future?. Retrovirology, 2013, 10, 53.	2.0	39
67	Haplotype diversity generated by ancient recombination-like events in the MHC of Indian rhesus macaques. Immunogenetics, 2013, 65, 569-584.	2.4	44
68	Unique peptide-binding motif for Mamu-B*037:01: an MHC class I allele common to Indian and Chinese rhesus macaques. Immunogenetics, 2013, 65, 897-900.	2.4	5
69	The repertoire of MHC class I genes in the common marmoset: evidence for functional plasticity. Immunogenetics, 2013, 65, 841-849.	2.4	21
70	Multiple Instances of Ancient Balancing Selection Shared Between Humans and Chimpanzees. Science, 2013, 339, 1578-1582.	12.6	253
71	Great ape genetic diversity and population history. Nature, 2013, 499, 471-475.	27.8	768
72	DNA/long peptide vaccination against conserved regions of SIV induces partial protection against SIVmac251 challenge. Aids, 2013, 27, 2841-2851.	2.2	21

#	Article	IF	CITATIONS
73	Evolution and diversity of copy number variation in the great ape lineage. Genome Research, 2013, 23, 1373-1382.	5.5	161
74	Insights on the functional interactions between miRNAs and copy number variations in the aging brain. Frontiers in Molecular Neuroscience, 2013, 6, 32.	2.9	18
75	Genomic Tools for Evolution and Conservation in the Chimpanzee: Pan troglodytes ellioti Is a Genetically Distinct Population. PLoS Genetics, 2012, 8, e1002504.	3.5	53
76	Evolution of HLA-DRB Genes. Molecular Biology and Evolution, 2012, 29, 3843-3853.	8.9	22
77	Methylation and Expression Analyses of the 7q Autism Susceptibility Locus Genes <i>MEST</i> , <i>COPG2,</i> and <i>TSGA14</i> in Human and Anthropoid Primate Cortices. Cytogenetic and Genome Research. 2012, 136, 278-287.	1.1	22
78	A High Density of Human Communication-Associated Genes in Chromosome 7q31-q36: Differential Expression in Human and Non-Human Primate Cortices. Cytogenetic and Genome Research, 2012, 136, 97-106.	1.1	12
79	The Impact of MicroRNAs on Brain Aging and Neurodegeneration. Current Gerontology and Geriatrics Research, 2012, 2012, 1-9.	1.6	48
80	Multilocus definition of MHC haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis). Immunogenetics, 2012, 64, 755-765.	2.4	15
81	A Fine-Scale Chimpanzee Genetic Map from Population Sequencing. Science, 2012, 336, 193-198.	12.6	273
82	Evaluation of IL-28B Polymorphisms and Serum IP-10 in Hepatitis C Infected Chimpanzees. PLoS ONE, 2012, 7, e46645.	2.5	4
83	Functional Annotation of Small Noncoding RNAs Target Genes Provides Evidence for a Deregulated Ubiquitin-Proteasome Pathway in Spinocerebellar Ataxia Type 1. Journal of Nucleic Acids, 2012, 2012, 1-11.	1.2	8
84	Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics, 2012, 64, 615-631.	2.4	82
85	DR haplotype diversity of the cynomolgus macaque as defined by its transcriptome. Immunogenetics, 2012, 64, 31-37.	2.4	14
86	123-P The IPD-MHC NHP database: New nomenclature for the non-human primate MHC alleles. Human Immunology, 2011, 72, S100.	2.4	0
87	Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiology of Aging, 2011, 32, 2316.e17-2316.e27.	3.1	108
88	Novel major histocompatibility complex class I alleles extracted from two rhesus macaque populations. Tissue Antigens, 2011, 77, 79-80.	1.0	6
89	<i>TRIM5</i> allelic polymorphism in macaque species/populations of different geographic origins: its impact on SIV vaccine studies. Tissue Antigens, 2011, 78, 256-262.	1.0	24
90	The extreme plasticity of killer cell Igâ€like receptor (KIR) haplotypes differentiates rhesus macaques from humans. European Journal of Immunology, 2011, 41, 2719-2728.	2.9	27

#	Article	IF	CITATIONS
91	Genomic plasticity of the MHC class I A region in rhesus macaques: extensive haplotype diversity at the population level as revealed by microsatellites. Immunogenetics, 2011, 63, 73-83.	2.4	42
92	A Comparative Analysis of Viral Peptides Presented by Contemporary Human and Chimpanzee MHC Class I Molecules. Journal of Immunology, 2011, 187, 5995-6001.	0.8	11
93	Immunization with Recombinant HLA Classes I and II, HIV-1 gp140, and SIV p27 Elicits Protection against Heterologous SHIV Infection in Rhesus Macaques. Journal of Virology, 2011, 85, 6442-6452.	3.4	16
94	Extensive DRB region diversity in cynomolgus macaques: recombination as a driving force. Immunogenetics, 2010, 62, 137-147.	2.4	22
95	The mosaic of KIR haplotypes in rhesus macaques. Immunogenetics, 2010, 62, 295-306.	2.4	57
96	Nomenclature for factors of the HLA system, 2010. Tissue Antigens, 2010, 75, 291-455.	1.0	3,121
97	AIDS-protective HLA-B*27/B*57 and chimpanzee MHC class I molecules target analogous conserved areas of HIV-1/SIV _{cpz} . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15175-15180.	7.1	49
98	No difference in Gag and Env immune-response profiles between vaccinated and non-vaccinated rhesus macaques that control immunodeficiency virus replication. Journal of General Virology, 2010, 91, 2974-2984.	2.9	2
99	An update to HLA Nomenclature, 2010. Bone Marrow Transplantation, 2010, 45, 846-848.	2.4	48
100	A Novel Gastrokine, Gkn3, Marks Gastric Atrophy and Shows Evidence of Adaptive Gene Loss in Humans. Gastroenterology, 2010, 138, 1823-1835.	1.3	57
101	Drive Against Hotspot Motifs in Primates Implicates the <i>PRDM9</i> Gene in Meiotic Recombination. Science, 2010, 327, 876-879.	12.6	607
102	Compound Evolutionary History of the Rhesus Macaque Mhc Class I B Region Revealed by Microsatellite Analysis and Localization of Retroviral Sequences. PLoS ONE, 2009, 4, e4287.	2.5	10
103	Differences in DNA Methylation Patterns and Expression of the CCRK Gene in Human and Nonhuman Primate Cortices. Molecular Biology and Evolution, 2009, 26, 1379-1389.	8.9	47
104	Patterns of Diversity in HIV-Related Loci among Subspecies of Chimpanzee: Concordance at CCR5 and Differences at CXCR4 and CX3CR1. Molecular Biology and Evolution, 2009, 26, 719-727.	8.9	17
105	Correlated evolution of nucleotide substitution rates and allelic variation in Mhc-DRB lineages of primates. BMC Evolutionary Biology, 2009, 9, 73.	3.2	9
106	Evidence for balancing selection acting on KIR2DL4 genotypes in rhesus macaques of Indian origin. Immunogenetics, 2009, 61, 503-512.	2.4	17
107	Definition of Mafa-A and -B haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis). Immunogenetics, 2009, 61, 745-753.	2.4	23
108	High resolution definition of <i>HLAâ€DRB</i> haplotypes by a simplified microsatellite typing technique. Tissue Antigens, 2009, 74, 486-493.	1.0	7

#	Article	IF	CITATIONS
109	The action of falciparum malaria on the human and chimpanzee genomes compared: Absence of evidence for a genomic signature of malaria at HBB and G6PD in three subspecies of chimpanzee. Infection, Genetics and Evolution, 2009, 9, 1248-1252.	2.3	5
110	A splice site mutation converts an inhibitory killer cell Ig-like receptor into an activating one. Molecular Immunology, 2009, 46, 640-648.	2.2	24
111	The chimpanzee Mhc-DRB region revisited: Gene content, polymorphism, pseudogenes, and transcripts. Molecular Immunology, 2009, 47, 381-389.	2.2	20
112	A snapshot of the Mamu-B genes and their allelic repertoire in rhesus macaques of Chinese origin. Immunogenetics, 2008, 60, 507-514.	2.4	47
113	Comparative genetics of a highly divergent DRB microsatellite in different macaque species. Immunogenetics, 2008, 60, 737-748.	2.4	27
114	Pinpointing a selective sweep to the chimpanzee MHC class I region by comparative genomics. Molecular Ecology, 2008, 17, 2074-2088.	3.9	44
115	Genomic plasticity of the immune-related Mhc class I B region in macaque species. BMC Genomics, 2008, 9, 514.	2.8	20
116	10-OR: A splice site mutation converts an inhibitory KIR gene into an activating one. Human Immunology, 2008, 69, S5.	2.4	0
117	Reshuffling of ancient peptide binding motifs between HLA-DRB multigene family members: Old wine served in new skins. Molecular Immunology, 2008, 45, 2743-2751.	2.2	19
118	Impact of Endogenous Intronic Retroviruses on Major Histocompatibility Complex Class II Diversity and Stability. Journal of Virology, 2008, 82, 6667-6677.	3.4	33
119	A highly divergent microsatellite facilitating fast and accurate DRB haplotyping in humans and rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8907-8912.	7.1	46
120	Molecular evolution of the human SRPX2 gene that causes brain disorders of the Rolandic and Sylvian speech areas. BMC Genetics, 2007, 8, 72.	2.7	25
121	MIC gene polymorphism and haplotype diversity in rhesus macaques. Tissue Antigens, 2007, 69, 212-219.	1.0	17
122	MHC class I A region diversity and polymorphism in macaque species. Immunogenetics, 2007, 59, 367-375.	2.4	98
123	Comparative Genetics of MHC Polymorphisms in Different Primate Species: Duplications and Deletions. Human Immunology, 2006, 67, 388-397.	2.4	74
124	The diallelic locus encoding the minor histocompatibility antigen HA-1 is evolutionarily conserved. Tissue Antigens, 2006, 68, 62-65.	1.0	3
125	Diversity of microRNAs in human and chimpanzee brain. Nature Genetics, 2006, 38, 1375-1377.	21.4	457
126	Extensive sharing of MHC class II alleles between rhesus and cynomolgus macaques. Immunogenetics, 2006, 58, 259-268.	2.4	64

#	Article	IF	CITATIONS
127	Reactivation by exon shuffling of a conserved <i>HLA-DR3</i> -like pseudogene segment in a New World primate species. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5864-5868.	7.1	42
128	An unusual mode of concerted evolution of the EGFâ€TM7 receptor chimera EMR2. FASEB Journal, 2006, 20, 2582-2584.	0.5	41
129	Allelic polymorphism in introns 1 and 2 of the HLA-DQA1 gene. Tissue Antigens, 2005, 65, 56-66.	1.0	5
130	Nomenclature for factors of the HLA system, 2004. Tissue Antigens, 2005, 65, 301-369.	1.0	491
131	Nomenclature for factors of the HLA system, 2004. International Journal of Immunogenetics, 2005, 32, 107-159.	1.8	89
132	Microsatellite typing of the rhesus macaque MHC region. Immunogenetics, 2005, 57, 198-209.	2.4	92
133	Unparalleled complexity of the MHC class I region in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1626-1631.	7.1	204
134	Comparison of Fine-Scale Recombination Rates in Humans and Chimpanzees. Science, 2005, 308, 107-111.	12.6	335
135	Reduced MIC Gene Repertoire Variation in West African Chimpanzees as Compared to Humans. Molecular Biology and Evolution, 2005, 22, 1375-1385.	8.9	34
136	MHC polymorphism: AIDS susceptibility in non-human primates. Trends in Immunology, 2005, 26, 227-233.	6.8	70
137	Nomenclature for Factors of the HLA System, 2004. Human Immunology, 2005, 66, 571-636.	2.4	179
138	Modeling human arthritic diseases in nonhuman primates. Arthritis Research and Therapy, 2005, 7, 145.	3.5	59
139	Genetic Makeup of the <i>DR</i> Region in Rhesus Macaques: Gene Content, Transcripts, and Pseudogenes. Journal of Immunology, 2004, 172, 6152-6157.	0.8	49
140	Metastable Tolerance to Rhesus Monkey Renal Transplants Is Correlated with Allograft TGF-β1+CD4+T Regulatory Cell Infiltrates. Journal of Immunology, 2004, 172, 5753-5764.	0.8	76
141	A prevalent POLG CAG microsatellite length allele in humans and African great apes. Mammalian Genome, 2004, 15, 492-502.	2.2	22
142	Evolutionary stability of MHC classÂlI haplotypes in diverse rhesus macaque populations. Immunogenetics, 2003, 55, 540-551.	2.4	70
143	Chronic hepatitis C virus infection established and maintained in chimpanzees independent of dendritic cell impairment. Hepatology, 2003, 38, 851-858.	7.3	53
144	IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Research, 2003, 31, 311-314.	14.5	738

#	Article	IF	CITATIONS
145	Specific nature of cellular immune responses elicited by chimpanzees against HIV-1. Human Immunology, 2003, 64, 681-688.	2.4	9
146	Major Histocompatibility Complex Class I Alleles Associated with Slow Simian Immunodeficiency Virus Disease Progression Bind Epitopes Recognized by Dominant Acute-Phase Cytotoxic-T-Lymphocyte Responses. Journal of Virology, 2003, 77, 9029-9040.	3.4	170
147	Microarray analysis of nonhuman primates: validation of experimental models in neurological disorders. FASEB Journal, 2003, 17, 1-19.	0.5	69
148	Chronic hepatitis C virus infection established and maintained in chimpanzees independent of dendritic cell impairment. Hepatology, 2003, 38, 851-858.	7.3	42
149	Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11748-11753.	7.1	143
150	Effects of MHC Class I on HIV/SIV Disease in Primates. Aids, 2002, 16, S105-S114.	2.2	29
151	Intra- and Interspecific Variation in Primate Gene Expression Patterns. Science, 2002, 296, 340-343.	12.6	813
152	Nomenclature for factors of the HLA system, 2002. Human Immunology, 2002, 63, 1213-1268.	2.4	103
153	Nomenclature for factors of the HLA system, 2002. International Journal of Immunogenetics, 2002, 29, 463-515.	1.2	47
154	Extensive Mhc-DQB variation in humans and non-human primate species. Immunogenetics, 2002, 54, 230-239.	2.4	69
155	Demyelination and axonal damage in a non-human primate model of multiple sclerosis. Journal of the Neurological Sciences, 2001, 184, 41-49.	0.6	74
156	Nomenclature for factors of the hla system, 2000. Human Immunology, 2001, 62, 419-468.	2.4	61
157	The major histocompatibility complex influences the ethiopathogenesis of MS-like disease in primates at multiple levels. Human Immunology, 2001, 62, 1371-1381.	2.4	19
158	Prophylactic and therapeutic effects of a humanized monoclonal antibody againstÂthe IL-2 receptor (DACLIZUMAB) on collagen-induced arthritis (CIA) inÂrhesus monkeys. Clinical and Experimental Immunology, 2001, 124, 134-141.	2.6	41
159	Non-human primates: essential partners in biomedical research. Immunological Reviews, 2001, 183, 5-9.	6.0	77
160	Differential evolutionary MHC class II strategies in humans and rhesus macaques: relevance for biomedical studies. Immunological Reviews, 2001, 183, 76-85.	6.0	62
161	Nonâ€human primate models of multiple sclerosis. Immunological Reviews, 2001, 183, 173-185.	6.0	75
162	Nomenclature for factors of the HLA system, 2000. International Journal of Immunogenetics, 2001, 28, 377-424.	1.2	18

#	Article	IF	CITATIONS
163	Allelic diversity of Mhc-DRB alleles in rhesus macaques. Tissue Antigens, 2000, 56, 58-68.	1.0	28
164	A new primate model for multiple sclerosis in the common marmoset. Trends in Immunology, 2000, 21, 290-297.	7.5	108
165	MHC diversity in Caucasians, investigated using highly heterogeneous noncoding sequence motifs at the DQB1 locus including a retroviral long terminal repeat element, and its comparison to nonhuman primate homologues. Immunogenetics, 2000, 51, 898-904.	2.4	11
166	Major histocompatibility complex class I diversity in a West African chimpanzee population: implications for HIV research. Immunogenetics, 2000, 51, 398-409.	2.4	53
167	Unprecedented Polymorphism of Mhc-DRB Region Configurations in Rhesus Macaques. Journal of Immunology, 2000, 164, 3193-3199.	0.8	77
168	Myelin/Oligodendrocyte Glycoprotein-Induced Autoimmune Encephalomyelitis in Common Marmosets: The Encephalitogenic T Cell Epitope pMOG24–36 Is Presented by a Monomorphic MHC Class II Molecule. Journal of Immunology, 2000, 165, 1093-1101.	0.8	123
169	IMGT, the international ImMunoGeneTics database. Nucleic Acids Research, 2000, 28, 219-221.	14.5	366
170	<i>Mamu-I</i> : A Novel Primate MHC Class I <i>B</i> -Related Locus with Unusually Low Variability. Journal of Immunology, 2000, 164, 1386-1398.	0.8	63
171	Definition of Five New Simian Immunodeficiency Virus Cytotoxic T-Lymphocyte Epitopes and Their Restricting Major Histocompatibility Complex Class I Molecules: Evidence for an Influence on Disease Progression. Journal of Virology, 2000, 74, 7400-7410.	3.4	72
172	The Evolution of the Major Histocompatibility Complex: Insights from Phylogeny. , 2000, , 163-169.		0
173	IMGT, the international ImMunoGeneTics database. Nucleic Acids Research, 1999, 27, 209-212.	14.5	409
174	Nomenclature for factors of the HLA system, 1998. International Journal of Immunogenetics, 1999, 26, 81-116.	1.2	1
175	Nomenclature for factors of the HLA system, 1998. Tissue Antigens, 1999, 53, 407-446.	1.0	220
176	Intronic sequence motifs of HLA-DQB1 are shared between humans, apes and old world monkeys, but a retroviral LTR element (DQLTR3) is human specific. Tissue Antigens, 1999, 53, 551-558.	1.0	19
177	Identification of DRB alleles in rhesus monkeys using polymerase chain reaction-sequence-specific primers (PCR-SSP) amplification. Tissue Antigens, 1999, 54, 254-263.	1.0	29
178	Differential cytotoxic T-lymphocyte (CTL) responses in HIV-1 immunised sibling chimpanzees with shared MHC haplotypes. Immunology Letters, 1999, 66, 61-67.	2.5	6
179	Nomenclature for Factors of the HLA System, 1998. Vox Sanguinis, 1999, 77, 164-191.	1.5	6
180	Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nature Medicine, 1999, 5, 1270-1276.	30.7	364

#	Article	IF	CITATIONS
181	Major histocompatibility complex class II polymorphisms in primates. Immunological Reviews, 1999, 167, 339-350.	6.0	169
182	The major histocompatibility complex class II region of the chimpanzee: towards a molecular map. Immunogenetics, 1999, 50, 160-167.	2.4	11
183	Major histocompatibility complex-linked MIC genes in rhesus macaques and other primates. Immunogenetics, 1999, 50, 358-362.	2.4	19
184	Nomenclature for Factors of the HLA System, 1998. Vox Sanguinis, 1999, 77, 164-191.	1.5	2
185	HLA-DRB4 Gene Encoded HLA-DR53 Specificity Segregating with the HLA-DR7, -DQ9 Haplotype: Unusual Association. Human Immunology, 1998, 59, 115-118.	2.4	6
186	Characterization and distribution of Mhc-DPB1 alleles in chimpanzee and rhesus macaque populations. Human Immunology, 1998, 59, 656-664.	2.4	26
187	Complete withdrawal of immunosuppression in kidney allograft recipients: a prospective study in rhesus monkeys. Transplantation Proceedings, 1998, 30, 2451-2453.	0.6	2
188	Histopathological Characterization of Magnetic Resonance Imaging-Detectable Brain White Matter Lesions in a Primate Model of Multiple Sclerosis. American Journal of Pathology, 1998, 153, 649-663.	3.8	145
189	IMGT, the International ImMunoGeneTics database. Nucleic Acids Research, 1998, 26, 297-303.	14.5	49
190	The common marmoset: A new world primate species with limited <i>Mhc</i> class II variability. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11745-11750.	7.1	114
191	Characterization of the ABO blood group genes in macaques: evidence for convergent evolution. Tissue Antigens, 1998, 51, 321-326.	1.0	30
192	COMPLETE WITHDRAWAL OF IMMUNOSUPPRESSION IN KIDNEY ALLOGRAFT RECIPIENTS. Transplantation, 1998, 66, 925-927.	1.0	22
193	IMGT, the international ImMunoGeneTics database. Nucleic Acids Research, 1997, 25, 206-211.	14.5	79
194	Liposome-mediated peptide loading of MHC-DR molecules in vivo. FEBS Letters, 1997, 409, 91-95.	2.8	18
195	Nomenclature for factors of the HLA system, 1996. Tissue Antigens, 1997, 49, 297-321.	1.0	262
196	Fullâ€length cDNA nucleotide sequence of the HLAâ€B*4202 allele. Tissue Antigens, 1997, 50, 83-84.	1.0	6
197	Fullâ€length cDNA nucleotide sequence of a serologically undetectable YLLAâ€ <i>DQA1</i> allele: HLAâ€ <i>DQA1*"LAâ€</i> . Tissue Antigens, 1997, 50, 334-339.	1.0	9
198	Nomenclature for factors of the HLA system, 1996. International Journal of Immunogenetics, 1997, 24, 105-151.	1.2	37

#	Article	IF	CITATIONS
199	Identification of new Mamu-DRB alleles using DGGE and direct sequencing. Immunogenetics, 1997, 45, 171-179.	2.4	69
200	5′ Regulatory nucleotide sequence of an HLA-A * 0101null allele. Immunogenetics, 1997, 46, 152-155.	2.4	13
201	Characterization of chimpanzee TCRV gene polymorphism: how old are human TCRV alleles?. Immunogenetics, 1997, 47, 115-123.	2.4	9
202	Nomenclature for Factors of the HLA System, 1996. Vox Sanguinis, 1997, 73, 105-130.	1.5	9
203	The role of major histocompatibility complex polymorphisms on SIV infection in rhesus macaques. Immunology Letters, 1996, 51, 35-38.	2.5	23
204	Conservation of minor histocompatibility antigens between human and non-human primates. European Journal of Immunology, 1996, 26, 2680-2685.	2.9	16
205	NOMENCLATURE FOR FACTORS OF THE HLA SYSTEM, 1995. International Journal of Immunogenetics, 1995, 22, 335-360.	1.2	5
206	Nomenclature for Factors of the HLA System, 1995. Vox Sanguinis, 1995, 69, 359-372.	1.5	28
207	Generation and reactivation of T-cell receptor A joining region pseudogenes in primates. Immunogenetics, 1995, 43, 57-62.	2.4	3
208	Allelic diversity at the Mhc-DP locus in rhesus macaques (Macaca mulatta). Immunogenetics, 1995, 41, 29-37.	2.4	39
209	Evolution of Major Histocompatibility Complex Polymorphisms and T-Cell Receptor Diversity in Primates. Immunological Reviews, 1995, 143, 33-62.	6.0	133
210	Characterization of the natural immune response of rhesus monkey CD4 ^{+ve} T cells to the bacterial antigen streptolysin O (SLO). Journal of Medical Primatology, 1995, 24, 306-313.	0.6	8
211	Activation of a myelin basic protein-specific human T cell clone by antigen-presenting cells from rhesus monkeys. International Immunology, 1995, 7, 1489-1495.	4.0	39
212	Identification of an Mhc-DPB1 allele involved in susceptibility to experimental autoimmune encephalomyelitis in rhesus macaques. International Immunology, 1995, 7, 1671-1679.	4.0	45
213	Evolution of the major histocompatibility complex DPA1 locus in primates. Human Immunology, 1995, 42, 184-187.	2.4	22
214	Structure and diversity of the T-cell receptor $\hat{I}\pm$ chain in rhesus macaque and chimpanzee. Human Immunology, 1995, 43, 85-94.	2.4	13
215	Nomenclature for factors of the HLA system, 1995. Human Immunology, 1995, 43, 149-164.	2.4	85
216	Major histocompatibility complex class I-associated vaccine protection from simian immunodeficiency virus-infected peripheral blood cells Journal of Experimental Medicine, 1994, 180, 769-774.	8.5	76

#	Article	IF	CITATIONS
217	Polymorphism of the ?-globin region in apes: implications for the origin of human haplotypes. Mammalian Genome, 1994, 5, 376-379.	2.2	4
218	Structure, diversity, and evolution of the T-cell receptor VB gene repertoire in primates. Immunogenetics, 1994, 40, 184-191.	2.4	40
219	Nonhuman primate Mhc-DQA and -DQB second exon nucleotide sequences: a compilation. Immunogenetics, 1994, 39, 81-92.	2.4	25
220	Characterization of a novel human T cell receptor β chain variable region family by transspecies DNA hybridization. European Journal of Immunology, 1994, 24, 641-645.	2.9	10
221	Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nature Genetics, 1994, 7, 525-530.	21.4	141
222	DRB, DQA, DQB AND DPB NUCLEOTIDE SEQUENCES OF SANGUINUS OEDIPUS B95-8. International Journal of Immunogenetics, 1994, 21, 67-77.	1.2	15
223	CURRENT KNOWLEDGE ON THE MAJOR HISTOCOMPATIBILITY COMPLEX CLASS II REGION IN NON-HUMAN PRIMATES. International Journal of Immunogenetics, 1994, 21, 391-402.	1.2	14
224	Gel electrophoretic analysis of rhesus macaque major histocompatibility complex class II DR molecules. Human Immunology, 1994, 40, 33-40.	2.4	13
225	Infectivity and virulence of cell-associated SIVmac after single passage in vivo. Aids, 1994, 8, 1730.	2.2	7
226	A uniquely high level of recombination at the HLA-B locus Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5893-5897.	7.1	104
227	Resistance to collagen-induced arthritis in rats and rhesus monkeys after immunization with attenuated type II collagen. European Journal of Immunology, 1993, 23, 1588-1594.	2.9	33
228	Characterization of the rhesus macaque (Macaca mulatta) equivalent of HLA-F. Immunogenetics, 1993, 38, 141-5.	2.4	50
229	Nonhuman primate Mhc-DRB sequences: a compilation. Immunogenetics, 1993, 38, 165-83.	2.4	41
230	Mhc-DRB genes of platyrrhine primates. Immunogenetics, 1993, 38, 210-22.	2.4	52
231	Major Histocompatibility Complex class II <i>DQ</i> diversity in Rhesus macaques. Tissue Antigens, 1993, 41, 178-185.	1.0	11
232	Major histocompatibility complex class II haplotypes in a breeding colony of chimpanzees (<i>Pan) Tj ETQq0 0 0</i>	rgBT/Over	rlock 10 Tf 50
233	Major hstocompatibility haplotypes in a breeding colony of chimpanzees (<i>Pan troglodytes</i>). Tissue Antigens, 1993, 42, 55-61	1.0	34

²³⁴ Mhc-DRB and-DQA1 nucleotide sequences of three lowland gorillas. Human Immunology, 1993, 36, 2.4 28

#	Article	IF	CITATIONS
235	Evolutionary conservation of Mhc-DR/Peptide/T cell interactions in primates. Human Immunology, 1993, 36, 67.	2.4	2
236	The biologic importance of conserved major histocompatibility complex class II motifs in primates. Human Immunology, 1993, 38, 201-205.	2.4	14
237	Evolutionary conservation of major histocompatibility complex-DR/peptide/T cell interactions in primates Journal of Experimental Medicine, 1993, 177, 979-987.	8.5	98
238	Duplication of the CD8 beta-chain gene as a marker of the man-gorilla-chimpanzee clade Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7049-7053.	7.1	7
239	Major histocompatibility complex class II polymorphisms in humans and chimpanzees. Journal of Medical Primatology, 1993, 22, 50-56.	0.6	8
240	Resistance to collagen-induced arthritis in a nonhuman primate species maps to the major histocompatibility complex class I region Journal of Experimental Medicine, 1992, 175, 933-937.	8.5	72
241	Evolutionary stability of transspecies major histocompatibility complex class II DRB lineages in humans and rhesus monkeys. Human Immunology, 1992, 35, 29-39.	2.4	88
242	Evolutionary relationships among the primate Mhc-DQA1 and DQA2 alleles. Immunogenetics, 1992, 36, 71-78.	2.4	57
243	T-cell receptor gamma/delta: comparison of gene configurations and function between humans and chimpanzees. Immunogenetics, 1992, 36, 294-301.	2.4	15
244	Mhc-DRB diversity of the chimpanzee (Pan troglodytes). Immunogenetics, 1992, 37, 1-11.	2.4	74
245	Fine specificity of the alloantiserum MSD-51: Epitope mapping of HLA-DRw53 determinants. Human Immunology, 1991, 32, 65-71.	2.4	4
246	Autoimmunity in non-human primates: the role of major histocompatibility complex and T cells, and implications for therapy. Human Immunology, 1991, 32, 31-40.	2.4	17
247	Major histocompatibility complex ancestral haplotypes in the chimpanzee: Identification using C4 allotyping. Human Immunology, 1991, 31, 34-39.	2.4	11
248	RFLP analysis of the rhesus monkey MHC class II DR subregion. Human Immunology, 1991, 30, 11-17.	2.4	18
249	Expression of HLA-DQ Antigens in the Small Intestinal Mucosa of Patients with Coeliac Disease. Scandinavian Journal of Gastroenterology, 1991, 26, 605-610.	1.5	8
250	Polymorphism of C4 and CYP21 genes in various primate species. Tissue Antigens, 1991, 37, 145-151.	1.0	15
251	Phenotypic and Functional Changes of Tumour Cells from Patients Treated with Monoclonal Anti-Idiotypic Antibodies. Scandinavian Journal of Immunology, 1990, 32, 441-449.	2.7	6
252	Experimental immune mediated arthritis in rhesus monkeys. Rheumatology International, 1990, 10, 21-29.	3.0	44

#	Article	IF	CITATIONS
253	The chimpanzee major histocompatibility complex class II DR subregion contains an unexpectedly high number of beta-chain genes. Immunogenetics, 1990, 32, 272-80.	2.4	26
254	Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics, 1990, 31, 217-9.	2.4	508
255	Major histocompatibility complex class II-restricted antigen presentation across a species barrier: conservation of restriction determinants in evolution Journal of Experimental Medicine, 1990, 172, 53-59.	8.5	38
256	RFLP analysis of theHLA-, ChLA-, andRhLA-DQ alpha chain gene regions: Conservation of restriction sites during evolution. Immunogenetics, 1989, 30, 432-439.	2.4	26
257	Molecular analysis of the HLAâ€DRS haplotype. Tissue Antigens, 1989, 34, 223-232.	1.0	5
258	Coordinated Vγ and Vδ gene segment rearrangements in human T cell receptor γ/δ+ lymphocytes. European Journal of Immunology, 1989, 19, 1261-1265.	2.9	36
259	DQw3 (DQw7, DQw8, DQw9): 2-D Gel Patterns. , 1989, , 412-415.		Ο
260	DRw6 (DRw13, DRw14): 2-D Gel Patterns. , 1989, , 393-395.		1
261	Comparative Analysis of the Two-Dimensional Gel Profiles of the Monoclonal Antibodies Tu22, IA3, and SPV-L3. , 1989, , 299-300.		1
262	DR5 (DRw11, DRw12): 2-D Gel Patterns. , 1989, , 390-392.		1
263	Molecular Characterization of Endothelial Monocyte Antigens. , 1989, , 585-587.		1
264	DRw52: 2-D Gel Patterns. , 1989, , 401-404.		3
265	DR1: 2-D Gel Patterns. , 1989, , 380-382.		Ο
266	Molecular analysis of HLAâ€DP specificities HLAâ€DPw1, â€DPw2 and â€DPw4: DP beta chain heterogeneity correlates with PLT subtyping. Tissue Antigens, 1988, 31, 5-13.	1.0	6
267	Polymorphism and complexity of HLA-DR: evidence for intra-HLA-DR region crossing-over events. Immunogenetics, 1988, 27, 40-45.	2.4	15
268	An HLA-DQ alpha allele identified at DNA and protein level is strongly associated with celiac disease. Human Immunology, 1988, 23, 271-279.	2.4	38
269	10 AN HLA-DQ ALPHA ALLELE IDENTIFIED AT DNA AND PROTEIN LEVEL IS STRONGLY ASSOCIATED WITH COELIAC DISEASE. Pediatric Research, 1988, 24, 406-406.	2.3	0
270	Molecular Diversity of HLA-DQ. Immunogenetics, 1987, 25, 305-312.	2.4	30

#	Article	IF	CITATIONS
271	Polymorphisms within the HLA-DRw6 haplotype. III. DQα and DQβ polymorphism associated with HLA-D. Human Immunology, 1987, 19, 91-103.	2.4	10
272	Divergent and invariant HLA class II beta chain isoelectric points. Human Immunology, 1986, 16, 38-51.	2.4	5
273	HLA-DO polymorphism associated with resistance to type I diabetes detected with monoclonal antibodies, isoelectric point differences, and restriction fragment length polymorphism Journal of Experimental Medicine, 1986, 164, 938-943.	8.5	91
274	Quantitative and qualitative differences in HLA-DR molecules correlated with antigen-presentation capacity. European Journal of Immunology, 1986, 16, 133-138.	2.9	35
275	Polymorphisms within the HLA-DR3 haplotypes. Immunogenetics, 1986, 23, 401-405.	2.4	40
276	Polymorphisms within the HLAâ€DR4 haplotypes. Tissue Antigens, 1986, 27, 22-31.	1.0	33
277	Polymorphisms within the HLA-DRw6 haplotype. Immunogenetics, 1985, 22, 23-33.	2.4	21
278	Typing for HLA class II at the product level. Immunology Letters, 1985, 10, 115-119.	2.5	6