Marcelo Giovanela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7599770/publications.pdf Version: 2024-02-01

MARCELO CIOVANELA

#	Article	IF	CITATIONS
1	Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere, 2005, 58, 715-733.	4.2	255
2	Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse. Chemical Engineering Journal, 2012, 192, 114-121.	6.6	194
3	Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and) Tj ETQq1 1 0.7843	814 rgBT /0 6.3	Dverlock 10 T
4	Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent. Journal of Water Process Engineering, 2015, 6, 11-20.	2.6	121
5	Chemical and spectroscopic characterization of humic acids extracted from the bottom sediments of a Brazilian subtropical microbasin. Journal of Molecular Structure, 2010, 981, 111-119.	1.8	93
6	Use of styrene butadiene rubber industrial waste devulcanized by microwave in rubber composites for automotive application. Materials & Design, 2012, 39, 437-443.	5.1	93
7	Elemental compositions, FT-IR spectra and thermal behavior of sedimentary fulvic and humic acids from aquatic and terrestrial environments. Geochemical Journal, 2004, 38, 255-264.	0.5	88
8	Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method. Applied Clay Science, 2011, 52, 56-61.	2.6	62
9	Design and Implementation of an Educational Game for Teaching Chemistry in Higher Education. Journal of Chemical Education, 2012, 89, 517-521.	1.1	60
10	Nonionic organoclay: A †Swiss Army knife' for the adsorption of organic micro-pollutants?. Journal of Colloid and Interface Science, 2015, 437, 71-79.	5.0	53
11	Elemental and spectral properties of peat and soil samples and their respective humic substances. Journal of Molecular Structure, 2010, 971, 33-38.	1.8	49
12	Characterization of Microwave-Devulcanized Composites of Ground SBR Scraps. Journal of Elastomers and Plastics, 2009, 41, 497-507.	0.7	48
13	Influence of injection molding on the flexural strength and surface quality of long glass fiber-reinforced polyamide 6.6 composites. Materials and Design, 2015, 85, 695-706.	3.3	44
14	Influence of flow restriction on the microstructure and mechanical properties of long glass fiber-reinforced polyamide 6.6 composites for automotive applications. Materials & Design, 2013, 47, 287-294.	5.1	43
15	Characterization and use of a lignin sample extracted from Eucalyptus grandis sawdust for the removal of methylene blue dye. International Journal of Biological Macromolecules, 2021, 170, 375-389.	3.6	43
16	Use of low-cost natural waste from the furniture industry for the removal of methylene blue by adsorption: isotherms, kinetics and thermodynamics. Cellulose, 2020, 27, 6445-6466.	2.4	41
17	Removal of methylene blue from aqueous solutions using a solid residue of the apple juice industry: Full factorial design, equilibrium, thermodynamics and kinetics aspects. Journal of Molecular Structure, 2021, 1224, 129296.	1.8	37
18	Application of potentiometry to characterize acid and basic sites in humic substances. Analytica Chimica Acta, 2001, 445, 89-98.	2.6	30

#	Article	IF	CITATIONS
19	Synthesis and characterization of thermoplastic polyurethane/nanoclay composites. Materials Science and Engineering C, 2009, 29, 474-478.	3.8	30
20	Green synthesis of silver nanoparticles using an extract of Ives cultivar (Vitis labrusca) pomace: Characterization and application in wastewater disinfection. Journal of Environmental Chemical Engineering, 2019, 7, 103383.	3.3	29
21	Mechanism of formation, characterization and cytotoxicity of green synthesized zinc oxide nanoparticles obtained from llex paraguariensis leaves extract. Nano Structures Nano Objects, 2020, 24, 100532.	1.9	27
22	Removal of coliform bacteria from industrial wastewaters using polyelectrolytes/silver nanoparticles self-assembled thin films. Journal of Environmental Chemical Engineering, 2016, 4, 137-146.	3.3	26
23	Self-assembled thin films of PAA/PAH/TiO2 for the photooxidation of ibuprofen. Part I: Optimization of photoactivity using design of experiments and surface response methodology. Chemical Engineering Journal, 2019, 360, 1447-1458.	6.6	26
24	Biodegradable polymer/clay systems for highly controlled release of <scp>NPK</scp> fertilizer. Polymers for Advanced Technologies, 2019, 30, 631-639.	1.6	25
25	Remoção dos hormônios 17β-estradiol e 17α-etinilestradiol de soluções aquosas empregando turfa decomposta como material adsorvente. Quimica Nova, 2011, 34, 1526-1533.	0.3	24
26	Removal of Congo red dye from aqueous solutions using a halloysite-magnetite-based composite. Water Science and Technology, 2016, 73, 2132-2142.	1.2	24
27	Development of passenger tire treads: reduction in zinc content and utilization of a bio-based lubricant. Journal of Cleaner Production, 2016, 117, 199-206.	4.6	24
28	3D-fluorescence spectroscopic analysis of HPLC fractionated estuarine fulvic and humic acids. Journal of the Brazilian Chemical Society, 2006, 17, 113-124.	0.6	23
29	Biopolymer nanocomposites based on poly(hydroxybutyrate- <i>co</i> -hydroxyvalerate) reinforced by a non-ionic organoclay. Polymer International, 2015, 64, 235-241.	1.6	22
30	Antimicrobial PAA/PAH Electrospun Fiber Containing Green Synthesized Zinc Oxide Nanoparticles for Wound Healing. Materials, 2021, 14, 2889.	1.3	22
31	Photocatalytic Nanostructured Self-Assembled Poly(allylamine hydrochloride)/Poly(acrylic acid) Polyelectrolyte Films Containing Titanium Dioxide–Gold Nanoparticles for Hydrogen Generation. Journal of Physical Chemistry C, 2013, 117, 23235-23243.	1.5	21
32	Characterization and Application of Nanostructured Films Containing Au and TiO ₂ Nanoparticles Supported in Bacterial Cellulose. Journal of Physical Chemistry C, 2015, 119, 340-349.	1.5	20
33	Nutrient contents in bottom sediment samples from a southern Brazilian microbasin. Environmental Earth Sciences, 2013, 69, 959-968.	1.3	17
34	Determination of Monoaromatic Hydrocarbons (BTEX) in Surface Waters from a Brazilian Subtropical Hydrographic Basin. Bulletin of Environmental Contamination and Toxicology, 2014, 92, 455-459.	1.3	16
35	Hydrogen production by photocatalytic water splitting usingÂpoly(allylamine) Tj ETQq1 1 0.784314 rgBT /Ove Journal of Hydrogen Energy, 2016, 41, 17995-18004.	rlock 10 Tf 3.8	50 107 Td (h 16
36	Development of bus body rubber profiles with additives from renewable sources: Part II – Chemical, physical–mechanical and aging characterization of elastomeric compositions. Materials & Design, 2014, 53, 1119-1123.	5.1	15

#	Article	IF	CITATIONS
37	Bactericidal Performance of Chlorophyllin-Copper Hydrotalcite Compounds. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	15
38	Disinfection of biologically treated industrial wastewater using montmorillonite/alginate/nanosilver hybrids. Journal of Water Process Engineering, 2015, 7, 273-279.	2.6	15
39	Isolation, characterization and valorization of lignin from Pinus elliottii sawdust as a low-cost biosorbent for zinc removal. Cellulose, 2019, 26, 4895-4908.	2.4	15
40	Potentiometric acidity determination in humic substances influenced by different analytical procedures. Journal of the Brazilian Chemical Society, 2009, 20, 1715-1723.	0.6	14
41	Comparison of the Effect of Plasticizers on PHBV—and Organoclay—Based Biodegradable Polymer Nanocomposites. Journal of Polymers and the Environment, 2018, 26, 2290-2299.	2.4	14
42	Characterization of Brazilian Peat Samples by Applying a Multimethod Approach. Spectroscopy Letters, 2013, 46, 201-210.	0.5	13
43	Self-assembled thin films of PAA/PAH/TiO2 for the photooxidation of ibuprofen. Part II: Characterization, sensitization, kinetics and reutilization. Chemical Engineering Journal, 2019, 361, 1487-1496.	6.6	13
44	Fluorescence Properties of Well-Characterized Sedimentary Estuarine Humic Compounds and Surrounding Pore Waters. Environmental Technology (United Kingdom), 2000, 21, 979-988.	1.2	12
45	Structural control of gold nanoparticles self-assemblies by layer-by-layer process. Nanoscale, 2011, 3, 1717.	2.8	12
46	Thermal, Chemical, and Morphological Characterization of Microcellular Polyurethane Elastomers. Journal of Elastomers and Plastics, 2009, 41, 323-338.	0.7	11
47	Evaluation of vulcanization nanoactivators with low zinc content: characterization of zinc oxides, cure, physicoâ€mechanical properties, Zn ²⁺ release in water and cytotoxic effect of <scp>EPDM</scp> compositions. Polymer Engineering and Science, 2018, 58, 1800-1809.	1.5	11
48	Development of bus body rubber profiles with additives from renewable sources: Part I – Additives characterization and processing and cure properties of elastomeric compositions. Materials & Design, 2014, 53, 1112-1118.	5.1	10
49	Characterization and application of self-assembled thin films of polyelectrolytes/TiO2/CdSe for hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 16568-16578.	3.8	10
50	Removal of malachite green dye from aqueous solutions by a magnetic adsorbent. Separation Science and Technology, 0, , 1-13.	1.3	10
51	Natural rubber compositions with the partial/total replacement of carbon black/naphthenic oil by renewable additives: Rice husk ash and cashew nut oil. Journal of Applied Polymer Science, 2020, 137, 48314.	1.3	10
52	Influence of silver nanoparticle deposition on self-assembled thin films of weak polyelectrolytes/TiO2 for bezafibrate photodegradation through central composite experimental design. Journal of Environmental Chemical Engineering, 2020, 8, 103619.	3.3	10
53	Preparation, characterization and application of polymeric thin films containing silver and copper nanoparticles with bactericidal activity. Journal of Environmental Chemical Engineering, 2020, 8, 103745.	3.3	10
54	Preparation, characterization and application of polyelectrolytes/TiO2/CdSe self-assembled films. Thin Solid Films, 2014, 551, 79-85.	0.8	9

#	Article	IF	CITATIONS
55	Removal of pyrene from aqueous solutions by adsorption onto Brazilian peat samples. Adsorption Science and Technology, 2016, 34, 538-551.	1.5	9
56	Development of chlorobutyl rubber/natural rubber nanocomposites with montmorillonite for use in the inner liner of tubeless ride tires. Journal of Elastomers and Plastics, 2017, 49, 47-61.	0.7	8
57	Evaluation of Stabilizing Additives Content in the Mechanical Properties of Elastomeric Compositions Subject to Environmental and Accelerated Aging. Materials Research, 2020, 23, .	0.6	8
58	Incorporação de pó de pneu em uma formulação para banda de rodagem de pneu de motocicleta. Polimeros, 2008, 18, 320-325.	0.2	6
59	Hydrogen photocatalytic production from the self-assembled films of PAH/PAA/TiO2 supported on bacterial cellulose membranes. International Journal of Hydrogen Energy, 2018, 43, 15794-15806.	3.8	6
60	Characterization of Films of Weak Polyelectrolytes Incorporated with Poly(vinyl-pyrrolidone)-Stabilized Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12, 8023-8028.	0.9	5
61	Removal of Zinc(II) from Aqueous Solutions using an Eco-Friendly Biosorbent Originating from the Winery Industry. Separation Science and Technology, 2014, 49, 2212-2220.	1.3	5
62	Cytotoxicity and antibacterial efficacy of silver deposited onto titanium plates by low-energy ion implantation. Journal of Materials Research, 2018, 33, 2545-2553.	1.2	5
63	Natural Rubber Films Incorporated with Red Propolis and Silver Nanoparticles Aimed for Occlusive Dressing Application. Materials Research, 2021, 24, .	0.6	4
64	High-performance antifungal nanohybrid materials composed of melanin-clays. Applied Clay Science, 2021, 211, 106201.	2.6	4
65	Agro-industrial residues as biosorbents for the removal of anti-inflammatories from aqueous matrices: An overview. Environmental Advances, 2022, 9, 100261.	2.2	4
66	Development and characterization of natural rubber latex wound dressings enriched with hydroxyapatite and silver nanoparticles for biomedical uses. Reactive and Functional Polymers, 2022, 177, 105316.	2.0	4
67	Synthesis of novel hybrid melanin-hydrotalcite with potential lethal activity against microorganisms. Materials Letters, 2020, 278, 128442.	1.3	2
68	Evaluation of natural and epoxidized vegetable oil in elastomeric compositions for tread rubber. Journal of Elastomers and Plastics, 2022, 54, 264-278.	0.7	2
69	SÃntese, caracterização e aplicação de nanopartÃculas de prata como agentes antimicrobianos. Estudos Tecnológicos Em Engenharia, 2013, 9, 20-26.	0.1	2
70	Magnetic chitosan microspheres for the removal of methyl violet 2B from aqueous solutions. Journal of Dispersion Science and Technology, 2023, 44, 1170-1182.	1.3	2
71	Confinement of a Nonionic Surfactant Membrane Within a Montmorillonite as a New Way to Prepare Organoclay Materials. Materials Research, 2016, 19, 1324-1328.	0.6	1
72	Silver Nitrate from Recovered Silver of Spent Ag2O Button Cells: Synthesis and Characterization. Journal of Sustainable Metallurgy, 2020, 6, 557-562.	1.1	1

#	Article	IF	CITATIONS
73	Análise Quantitativa de Aflatoxinas B1, B2, G1 e G2 em Ração para Aves de Corte por Cromatografia LÃquida de Alta Eficiência com Detecção por Fluorescência. Scientia Cum Industria, 2016, 4, 148-153.	0.1	1
74	Preparação e Caracterização de Filmes Finos Automontados de PAH/PAA/TiO2 Fotossensibilizados com Clorofilina Cúprica para a Fotodegradação de Paracetamol. Scientia Cum Industria, 2018, 6, 31-38.	0.1	1
75	Polymeric Composites for Industrial Water Treatment: An Overview. Water Science and Technology Library, 2022, , 257-283.	0.2	1
76	Sustainable green nanomaterials for potential development in environmental industries. , 2022, , 461-510.		0
77	SÃntese e Caracterização de CopolÃmeros Dibloco Poli(Estireno)-b-Poli(γ-Benzil-L-Clutamato). Scientia Cum Industria, 0, , 31-38.	0.1	0
78	Propriedades Mecânicas e Térmicas e Morfologia de Compósitos de Poliuretano Termoplástico (TPU) com Argila. Scientia Cum Industria, 2015, 3, 50-54.	0.1	0
79	Preparation and characterization of polysulfone-polyurethane membranes for recovery of simulated wastewater from industrial textile processes. Environmental Technology (United Kingdom), 2020, , 1-14	1.2	Ο