Jinbo Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7599712/publications.pdf

Version: 2024-02-01

361296 223716 2,380 46 20 46 h-index citations g-index papers 47 47 47 3371 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Hydrophobic Lightâ€toâ€Heat Conversion Membranes with Selfâ€Healing Ability for Interfacial Solar Heating. Advanced Materials, 2015, 27, 4889-4894.	11.1	821
2	Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces. Journal of Materials Chemistry A, 2015, 3, 2844-2852.	5. 2	293
3	A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting. Journal of Materials Chemistry A, 2015, 3, 18963-18969.	5.2	171
4	Point-of-care testing detection methods for COVID-19. Lab on A Chip, 2021, 21, 1634-1660.	3.1	150
5	Extraction, amplification and detection of DNA in microfluidic chip-based assays. Mikrochimica Acta, 2014, 181, 1611-1631.	2.5	81
6	Generation and manipulation of "smart―droplets. Soft Matter, 2009, 5, 576-581.	1.2	69
7	Synergistic Optimization toward the Sensitivity and Linearity of Flexible Pressure Sensor via Double Conductive Layer and Porous Microdome Array. ACS Applied Materials & Interfaces, 2020, 12, 31021-31035.	4.0	68
8	Efficient and Anisotropic Fog Harvesting on a Hybrid and Directional Surface. Advanced Materials Interfaces, 2017, 4, 1600801.	1.9	58
9	Design and integration of an all-in-one biomicrofluidic chip. Biomicrofluidics, 2008, 2, 34103.	1.2	53
10	Influence of liquid phase on nanoparticle-based giant electrorheological fluid. Nanotechnology, 2008, 19, 165602.	1.3	51
11	Are vacuum-filtrated reduced graphene oxide membranes symmetric?. Nanoscale, 2016, 8, 1108-1116.	2.8	50
12	Microdroplet-based universal logic gates by electrorheological fluid. Soft Matter, 2011, 7, 7493.	1.2	42
13	High-Throughput Generation of Durable Droplet Arrays for Single-Cell Encapsulation, Culture, and Monitoring. Analytical Chemistry, 2018, 90, 4303-4309.	3.2	39
14	Fast detection of genetic information by an optimized PCR in an interchangeable chip. Biomedical Microdevices, 2012, 14, 179-186.	1.4	34
15	Smart electroresponsive droplets in microfluidics. Soft Matter, 2012, 8, 11589.	1.2	31
16	Unclonable Microâ€Texture with Clonable Microâ€6hape towards Rapid, Convenient, and Lowâ€Cost Fluorescent Antiâ€Counterfeiting Labels. Small, 2021, 17, e2100244.	5.2	28
17	Lithography-Free Formation of Controllable Microdomes via Droplet Templates for Robust, Ultrasensitive, and Flexible Pressure Sensors. ACS Applied Nano Materials, 2019, 2, 7178-7187.	2.4	25
18	Performance tuning of giant electrorheological fluids by interfacial tailoring. Soft Matter, 2018, 14, 1427-1433.	1.2	24

#	Article	IF	CITATIONS
19	Size-Controlled Patterning of Single-Crystalline Perovskite Arrays toward a Tunable High-Performance Microlaser. ACS Applied Materials & Interfaces, 2020, 12, 2662-2670.	4.0	24
20	Highly stable and efficient electrorheological suspensions with hydrophobic interaction. Journal of Colloid and Interface Science, 2020, 564, 381-391.	5.0	22
21	Mapping three-dimensional temperature in microfluidic chip. Scientific Reports, 2013, 3, 3321.	1.6	20
22	A stable high-performance isotropic electrorheological elastomer towards controllable and reversible circular motion. Composites Part B: Engineering, 2020, 193, 107988.	5.9	20
23	High-throughput controllable generation of droplet arrays with low consumption. Applied Surface Science, 2018, 442, 189-194.	3.1	19
24	High‶hroughput and Controllable Fabrication of Soft Screen Protectors with Microlens Arrays for Light Enhancement of OLED Displays. Advanced Materials Technologies, 2020, 5, 2000382.	3.0	19
25	Multiple and High-Throughput Droplet Reactions via Combination of Microsampling Technique and Microfluidic Chip. Analytical Chemistry, 2012, 84, 9689-9693.	3.2	15
26	Efficient Electrorheological Technology for Materials, Energy, and Mechanical Engineering: From Mechanisms to Applications. Engineering, 2023, 24, 151-171.	3.2	15
27	Preparation of orthogonal physicochemical gradients on PDMS surface using microfluidic concentration gradient generator. Applied Surface Science, 2019, 471, 213-221.	3.1	14
28	Design, testing and modelling of a tuneable GER fluid damper under shear mode. Smart Materials and Structures, 2020, 29, 085011.	1.8	13
29	Patterning cell using Si-stencil for high-throughput assay. RSC Advances, 2011, 1, 746.	1.7	11
30	High-throughput generation of a concentration gradient on open arrays by serial and parallel dilution for drug testing and screening. Sensors and Actuators B: Chemical, 2020, 305, 127487.	4.0	10
31	Digital microfluidic programmable stencil (dMPS) for protein and cell patterning. RSC Advances, 2016, 6, 101760-101769.	1.7	9
32	Facile fabrication of drug-loaded PEGDA microcapsules for drug evaluation using droplet-based microchip. Chinese Chemical Letters, 2022, 33, 2697-2700.	4.8	9
33	Lateral Size Scaling Effect during Discontinuous Dewetting. Advanced Materials Interfaces, 2018, 5, 1800729.	1.9	8
34	Smart Table Tennis Racket with Tunable Stiffness for Diverse Play Styles and Unconventional Technique Training. Advanced Materials Technologies, 2021, 6, 2100535.	3.0	7
35	Chiral CuS nanoparticles and their photothermal properties. CrystEngComm, 2022, 24, 4955-4961.	1.3	7
36	The surfactant effect on electrorheological performance and colloidal stability. Soft Matter, 2021, 17, 7158-7167.	1.2	6

#	Article	IF	CITATIONS
37	All-Inorganic Perovskite Nanorod Arrays with Spatially Randomly Distributed Lasing Modes for All-Photonic Cryptographic Primitives. ACS Applied Materials & Distributed Lasing Modes for National Primitives. ACS Applied Materials & Distributed Lasing Modes for All-Photonic Cryptographic Primitives. ACS Applied Materials & Distributed Lasing Modes for All-Photonic Cryptographic Primitives. ACS Applied Materials & Distributed Lasing Modes for All-Photonic Cryptographic Primitives. ACS Applied Materials & Distributed Lasing Modes for All-Photonic Cryptographic Primitives.	4.0	6
38	The research progress of electrorheological fluids. Chinese Science Bulletin, 2017, 62, 2358-2371.	0.4	6
39	Surface-tension-confined droplet microfluidics. Chinese Physics B, 2018, 27, 029202.	0.7	5
40	Design and experiment of bio-inspired GER fluid damper. Science China Information Sciences, 2020, 63, 1.	2.7	5
41	Random photoluminescence emission base-on droplet evaporative segregation of All-inorganic perovskite for All-photonic cryptographic primitive. Applied Surface Science, 2021, 567, 150827.	3.1	5
42	Surface-tension-confined assembly of a metal–organic framework in femtoliter droplet arrays. RSC Advances, 2018, 8, 3680-3686.	1.7	4
43	Effect of additives on the growth of HKUST-1 crystals synthesized by microfluidic chips with concentration gradient. Biomicrofluidics, 2020, 14, 034110.	1.2	4
44	Impact of molecular chain structure of suspension phase on giant electrorheological performance. Smart Materials and Structures, 2022, 31, 025030.	1.8	4
45	Calcium Carbonate Mineralization in a Surface-Tension-Confined Droplets Array. Crystals, 2019, 9, 284.	1.0	3
46	Efficient and stable electrorheological fluids based on chestnut-like cobalt hydroxide coupled with surface-functionalized carbon dots. Soft Matter, 2022, 18, 3845-3855.	1.2	2