List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/759888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, 2010, 327, 1214-1218.	6.0	1,140
2	Impact Origin of the Chesapeake Bay Structure and the Source of the North American Tektites. Science, 1996, 271, 1263-1266.	6.0	139
3	Ries crater and suevite revisited—Observations and modeling Part I: Observations. Meteoritics and Planetary Science, 2013, 48, 515-589.	0.7	139
4	Original size of the Vredefort Structure: Implications for the geological evolution of the Witwatersrand Basin. Meteoritics and Planetary Science, 1997, 32, 71-77.	0.7	127
5	A TEM investigation of shock metamorphism in quartz from the Vredefort dome, South Africa. Tectonophysics, 1994, 230, 223-239.	0.9	117
6	Dating Terrestrial Impact Structures. Elements, 2012, 8, 49-53.	0.5	112
7	Impact structures in Africa: A review. Journal of African Earth Sciences, 2014, 93, 57-175.	0.9	110
8	Experimental constraints on shock-induced microstructures in naturally deformed silicates. Tectonophysics, 1996, 256, 165-217.	0.9	107
9	Re-Os isotope and geochemical study of the Vredefort Granophyre: Clues to the origin of the Vredefort structure, South Africa. Geology, 1996, 24, 913.	2.0	90
10	Laser probe argonâ€40/argonâ€39 dating of coesite―and stishoviteâ€bearing pseudotachylytes and the age of the Vredefort impact event. Meteoritics, 1995, 30, 335-343.	1.5	88
11	Thermal-metamorphic signature of an impact event in the Vredefort dome, South Africa. Geology, 1998, 26, 787.	2.0	84
12	Ries crater and suevite revisited—Observations and modeling Part <scp>II</scp> : Modeling. Meteoritics and Planetary Science, 2013, 48, 590-627.	0.7	80
13	Observations and interpretations at Vredefort, Sudbury, and Chicxulub: Towards an empirical model of terrestrial impact basin formation. Meteoritics and Planetary Science, 2008, 43, 855-882.	0.7	76
14	Discerning primary versus diagenetic signals in carbonate carbon and oxygen isotope records: An example from the Permian–Triassic boundary of Iran. Chemical Geology, 2016, 422, 94-107.	1.4	65
15	A high-precision 40Ar/39Ar age for the Nördlinger Ries impact crater, Germany, and implications for the accurate dating of terrestrial impact events. Geochimica Et Cosmochimica Acta, 2018, 220, 146-157.	1.6	64
16	The melt rocks of the Vredefort impact structure – Vredefort Granophyre and pseudotachylitic breccias: Implications for impact cratering and the evolution of the Witwatersrand Basin. Chemie Der Erde, 2006, 66, 1-35.	0.8	61
17	Geochemistry of 2.63–2.49Ga impact spherule layers and implications for stratigraphic correlations and impact processes. Precambrian Research, 2009, 175, 51-76.	1.2	54
18	Geochemistry and petrology of Witwatersrand and Dwyka diamictites from South Africa: search for an extraterrestrial component. Geochimica Et Cosmochimica Acta, 2001, 65, 2007-2016	1.6	53

#	Article	IF	CITATIONS
19	Shock Metamorphism of Bosumtwi Impact Crater Rocks, Shock Attenuation, and Uplift Formation. Science, 2008, 322, 1678-1681.	6.0	49
20	The Dhala structure, Bundelkhand craton, Central India—Eroded remnant of a large Paleoproterozoic impact structure. Meteoritics and Planetary Science, 2008, 43, 1383-1398.	0.7	45
21	Early Archaean spherule beds in the Barberton Mountain Land, South Africa: no evidence for impact origin. Precambrian Research, 1995, 74, 1-33.	1.2	44
22	Impact controversies: Impact recognition criteria and related issues. Meteoritics and Planetary Science, 2014, 49, 723-731.	0.7	44
23	The current state of knowledge about shatter cones: Introduction to the special issue. Meteoritics and Planetary Science, 2016, 51, 1389-1434.	0.7	44
24	Geochemistry and mineralogy of Early Archean spherule beds, Barberton Mountain Land, South Africa: evidence for origin by impact doubtful. Earth and Planetary Science Letters, 1993, 119, 441-452.	1.8	43
25	Vredefort shatter cones revisited. Journal of Geophysical Research, 1999, 104, 4911-4930.	3.3	43
26	New observations on shatter cones in the Vredefort impact structure, South Africa, and evaluation of current hypotheses for shatter cone formation. Meteoritics and Planetary Science, 2006, 41, 1737-1759.	0.7	39
27	Uppermost impact fallback layer in the Bosumtwi crater (Ghana): Mineralogy, geochemistry, and comparison with Ivory Coast tektites. Meteoritics and Planetary Science, 2007, 42, 709-729.	0.7	39
28	Petrogenesis of the Dullstroom Formation, Bushveld Magmatic Province, South Africa. Contributions To Mineralogy and Petrology, 1999, 137, 133-146.	1.2	37
29	Pseudotachylites of the Vredefort Dome and the surrounding Witwatersrand Basin, South Africa. Special Paper of the Geological Society of America, 1992, , 177-196.	0.5	36
30	Geochemical evidence for an impact origin for a Late Archean spherule layer, Transvaal Supergroup, South Africa. Geology, 2000, 28, 1103.	2.0	36
31	Elemental mapping using proton-induced x-rays. X-Ray Spectrometry, 2001, 30, 156-163.	0.9	36
32	The first MEMIN shock recovery experiments at low shock pressure (5–12.5 GPa) with dry, porous sandstone. Meteoritics and Planetary Science, 2013, 48, 99-114.	0.7	35
33	Planar deformation features and impact glass in inclusions from the Vredefort Granophyre, South Africa. Meteoritics and Planetary Science, 2002, 37, 807-822.	0.7	34
34	Shock pressure distribution in the Vredefort impact structure, South Africa. , 2005, , .		33
35	An extended field of crater-shaped structures in the Gilf Kebir region, Egypt: Observations and hypotheses about their origin. Journal of African Earth Sciences, 2006, 46, 281-299.	0.9	32
36	The Impact Crater Bandwagon (Some problems with the terrestrial impact cratering record). Meteoritics and Planetary Science, 2007, 42, 1467-1472.	0.7	32

#	Article	IF	CITATIONS
37	IMPACT! - BOLIDES, CRATERS, AND CATASTROPHES. Elements, 2012, 8, 19-24.	0.5	32
38	Petrography and geochemistry of impactites and volcanic bedrock in the <scp>ICDP</scp> drill core D1c from Lake El'gygytgyn, <scp>NE</scp> Russia. Meteoritics and Planetary Science, 2013, 48, 1251-1286.	0.7	32
39	The HMX mixing calculation program. Mathematical Geosciences, 1989, 21, 853-860.	0.9	31
40	El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project. Meteoritics and Planetary Science, 2013, 48, 1108-1129.	0.7	31
41	Structural evolution of the 40 km wide Araguainha impact structure, central Brazil. Meteoritics and Planetary Science, 2008, 43, 701-716.	0.7	30
42	Comparison of the osmium and chromium isotopic methods for the detection of meteoritic components in impactites: Examples from the Morokweng and Vredefort impact structures, South Africa. , 2002, , .		30
43	Saltpan impact crater, South Africa: Geochemistry of target rocks, breccias, and impact glasses, and osmium isotope systematics. Geochimica Et Cosmochimica Acta, 1994, 58, 2893-2910.	1.6	29
44	The first large meteorite impact structure discovered in the Middle East: Jebel Waqf as Suwwan, Jordan. Meteoritics and Planetary Science, 2008, 43, 1681-1690.	0.7	29
45	Shock metamorphism of siliceous volcanic rocks of the El'gygytgyn impact crater (Chukotka, Russia). , 2005, , .		28
46	The Aouelloul crater, Mauritania: On the problem of confirming the impact origin of a small crater. Meteoritics and Planetary Science, 1998, 33, 513-517.	0.7	27
47	The significance of the Vredefort Dome for the thermal and structural evolution of the Witwatersrand Basin, South Africa. Mineralogy and Petrology, 1999, 66, 5-23.	0.4	26
48	Pseudotachylitic breccias from fault zones in the Witwatersrand Basin, South Africa: evidence of autometasomatism and post-brecciation alteration processes. Mineralogy and Petrology, 1999, 66, 25-53.	0.4	26
49	Woodleigh impact structure, Australia: Shock petrography and geochemical studies. Meteoritics and Planetary Science, 2003, 38, 1109-1130.	0.7	26
50	Chesapeake Bay impact structure drilled. Eos, 2006, 87, 349.	0.1	26
51	Lithostratigraphy of the impactite and bedrock section of <scp>ICDP</scp> drill core D1c from the El'gygytgyn impact crater, Russia. Meteoritics and Planetary Science, 2013, 48, 1143-1159.	0.7	25
52	U-Pb and Lu-Hf zircon geochronology of the Cañadón Asfalto Basin, Chubut, Argentina: Implications for the magmatic evolution in central Patagonia. Journal of South American Earth Sciences, 2017, 78, 190-212.	0.6	25
53	Experimental impact cratering: A summary of the major results of the <scp>MEMIN</scp> research unit. Meteoritics and Planetary Science, 2018, 53, 1543-1568.	0.7	25
54	Silicate liquid immiscibility in impact melts. Meteoritics and Planetary Science, 2018, 53, 1594-1632.	0.7	25

#	Article	IF	CITATIONS
55	The age of the Roter Kamm impact crater, Namibia: Constraints from ⁴⁰ Arâ€ ³⁹ Ar, Kâ€Ar, Rbâ€&r, fission track, and ¹⁰ Beâ€ ²⁶ Al studies. Meteoritics, 1993, 28, 204-212.	1.5	24
56	Aorounga and Gweni Fada impact structures, Chad: Remote sensing, petrography, and geochemistry of target rocks. Meteoritics and Planetary Science, 2005, 40, 1455-1471.	0.7	24
57	Petrography and geochemistry of target rocks and impactites from the Ilyinets Crater, Ukraine. Meteoritics and Planetary Science, 1998, 33, 1317-1333.	0.7	23
58	Early archean spherule beds in the Barberton mountain land, South Africa: Impact or terrestrial origin?. , 2000, , 117-180.		23
59	Impact cratering — fundamental process in geoscience and planetary science. Journal of Earth System Science, 2007, 116, 81-98.	0.6	23
60	Evidence that Lake Cheko is not an impact crater. Terra Nova, 2008, 20, 165-168.	0.9	23
61	The impact pseudotachylitic breccia controversy: Insights from first isotope analysis of Vredefort impact-generated melt rocks. Geochimica Et Cosmochimica Acta, 2017, 214, 266-281.	1.6	22
62	The Colônia structure, São Paulo, Brazil. Meteoritics and Planetary Science, 2011, 46, 1630-1639.	0.7	21
63	Petrography of the impact breccias of the Enkingen (SUBO 18) drill core, southern Ries crater, Germany: New estimate of impact melt volume. Bulletin of the Geological Society of America, 2012, 124, 104-132.	1.6	21
64	Linking shock textures revealed by BSE, CL, and EBSD with Uâ€Pb data (LAâ€ICPâ€MS and SIMS) from zircon from the Araguainha impact structure, Brazil. Meteoritics and Planetary Science, 2019, 54, 2286-2311.	0.7	21
65	Geochemical and petrographic characteristics of impactites and Cretaceous target rocks from the Yaxcopoilâ€I borehole, Chicxulub impact structure, Mexico: Implications for target composition. Meteoritics and Planetary Science, 2005, 40, 1513-1536.	0.7	20
66	Drill core LBâ€08A, Bosumtwi impact structure, Ghana: Petrographic and shock metamorphic studies of material from the central uplift. Meteoritics and Planetary Science, 2007, 42, 611-633.	0.7	20
67	Formation of pseudotachylitic breccias in the central uplifts of very large impact structures: Scaling the melt formation. Meteoritics and Planetary Science, 2011, 46, 543-555.	0.7	20
68	Red Wing Creek structure, North Dakota: Petrographical and geochemical studies, and confirmation of impact origin. Meteoritics and Planetary Science, 1996, 31, 335-342.	0.7	19
69	Bosumtwi impact structure, Ghana: Geochemistry of impactites and target rocks, and search for a meteoritic component. Meteoritics and Planetary Science, 2005, 40, 1493-1511.	0.7	19
70	BP and Oasis Impact Structures, Libya: Remote Sensing and Field Studies. , 2005, , 161-190.		19
71	Bosumtwi Impact Crater, Ghana: A Remote Sensing Investigation. Impact Studies, 2002, , 189-210.	0.2	19
72	Morokweng impact structure, South Africa: Geologic, petrographic, and isotopic results, and implications for the size of the structure. , 1999, , .		18

#	Article	IF	CITATIONS
73	Archean spherule layers in the Barberton greenstone belt, South Africa: A discussion of problems related to the impact interpretation. , 2006, , .		18
74	First SHRIMP U-Pb and ⁴⁰ Ar/ ³⁹ Ar chronological results from impact melt breccia from the Paleoproterozoic Dhala impact structure, India. , 2010, , .		18
75	Insights into the morphology of the Serra da Cangalha impact structure from geophysical modeling. Meteoritics and Planetary Science, 2012, 47, 1659-1670.	0.7	18
76	Zircon U-Pb ages and Hf isotopes for the Diablillos Intrusive Complex, Southern Puna, Argentina: Crustal evolution of the Lower Paleozoic Orogen, Southwestern Gondwana margin. Journal of South American Earth Sciences, 2017, 80, 316-339.	0.6	18
77	Petrography, geochemistry, and alteration of country rocks from the Bosumtwi impact structure, Ghana. Meteoritics and Planetary Science, 2007, 42, 513-540.	0.7	17
78	Ries crater, Germany: The Enkingen magnetic anomaly and associated drill core SUBO 18. , 2010, , .		17
79	Ballen quartz and cristobalite in impactites: New investigations. , 2010, , .		17
80	Shock deformation confirms the impact origin for the Cerro do Jarau, Rio Grande do Sul, Brazil, structure. Meteoritics and Planetary Science, 2019, 54, 2384-2397.	0.7	16
81	Lithostratigraphic and petrographic analysis of ICDP drill core LBâ€07A, Bosumtwi impact structure, Ghana. Meteoritics and Planetary Science, 2007, 42, 569-589.	0.7	15
82	Shatter cones and planar deformation features confirm Santa Marta in PiauÃ-State, Brazil, as an impact structure. Meteoritics and Planetary Science, 2014, 49, 1915-1928.	0.7	15
83	Geochemical evidence of an extraterrestrial component in impact melt breccia from the Paleoproterozoic Dhala impact structure, India. Meteoritics and Planetary Science, 2017, 52, 722-736.	0.7	15
84	New constraints on the Paleoarchean meteorite bombardment of the Earth – Geochemistry and Re-Os isotope signatures of spherule layers in the BARB5 ICDP drill core from the Barberton Greenstone Belt, South Africa. Geochimica Et Cosmochimica Acta, 2017, 211, 322-340.	1.6	15
85	Petrography, geochemistry, and argonâ€40/argonâ€39 ages of impactâ€melt rocks and breccias from the Ames impact structure, Oklahoma: The Nicor Chestnut 18â€4 drill core. Meteoritics and Planetary Science, 2001, 36, 651-669.	0.7	14
86	SHRIMP zircon age constraints on Mesoarchean crustal development in the Vredefort dome, central Kaapvaal Craton, South Africa. , 2006, , .		14
87	Search for a meteoritic component in drill cores from the Bosumtwi impact structure, Ghana: Platinum group element contents and osmium isotopic characteristics. Meteoritics and Planetary Science, 2007, 42, 743-753.	0.7	14
88	The Serra da Cangalha impact structure, Brazil: Geological, stratigraphic and petrographic aspects of a recently confirmed impact structure. Journal of South American Earth Sciences, 2013, 45, 316-330.	0.6	14
89	Geochemistry of impactites and basement lithologies from ICDP borehole LBâ€07A, Bosumtwi impact structure, Ghana. Meteoritics and Planetary Science, 2007, 42, 667-688.	0.7	13
90	New impactâ€melt rock from the Roter Kamm impact structure, Namibia: Further constraints on impact age, melt rock chemistry, and projectile composition. Meteoritics and Planetary Science, 2008, 43, 1201-1218.	0.7	13

#	Article	IF	CITATIONS
91	The Agoudal (High Atlas Mountains, Morocco) shatter cone conundrum: A recent meteorite fall onto the remnant of an impact site. Meteoritics and Planetary Science, 2016, 51, 1497-1518.	0.7	13
92	Interaction of aluminum projectiles with quartz sand in impact experiments: Formation of khatyrkite (CuAl2) and reduction of SiO2 to Si. Geochimica Et Cosmochimica Acta, 2016, 192, 295-317.	1.6	13
93	Response to comment on "A high-precision 40Ar/39Ar age for the Nördlinger Ries impact crater, Germany, and implications for the accurate dating of terrestrial impact events―by Schmieder et al. (Geochimica et Cosmochimica Acta 220 (2018) 146–157). Geochimica Et Cosmochimica Acta, 2018, 238, 602-605.	1.6	13
94	Why deep drilling in the Colônia Basin (Brazil)?. Scientific Drilling, 0, 20, 33-39.	1.0	13
95	The age of the Saltpan impact crater, South Africa. Meteoritics, 1994, 29, 374-379.	1.5	12
96	Impact-generated pseudotachylitic breccia in drill core BH-5 Hätberg, Siljan impact structure, Sweden. Gff, 2015, 137, 141-162.	0.4	10
97	Remnants of Early Archean Impact Deposits on Earth: Search for a Meteoritic Component in the BARB5 and CT3 Drill Cores (Barberton Greenstone Belt, South Africa). Procedia Engineering, 2015, 103, 310-317.	1.2	10
98	Tenoumer impact crater, Mauritania: Impact melt genesis from a lithologically diverse target. Meteoritics and Planetary Science, 2016, 51, 323-350.	0.7	10
99	Early Archean spherule layers from the Barberton Greenstone Belt, South Africa: Mineralogy and geochemistry of the spherule beds in the <scp>CT</scp> 3 drill core. Meteoritics and Planetary Science, 2017, 52, 2586-2631.	0.7	10
100	Microchemical investigation of small-scale pseudotachylitic breccias from the Archean gneiss of the Vredefort Dome, South Africa. , 2010, , .		9
101	Shatter cones at the Keurusselk¤mpact structure and their relation to local jointing. Meteoritics and Planetary Science, 2016, 51, 1534-1552.	0.7	9
102	Documentation of shock features in impactites from the Dhala impact structure, India. Meteoritics and Planetary Science, 2019, 54, 2312-2333.	0.7	9
103	THE IMPACT-FLOOD CONNECTION: DOES IT EXIST?. Terra Nova, 1994, 6, 644-650.	0.9	8
104	Petrographic and Micro-XRF analysis of multiple archean impact-derived spherule layers in drill core CT3 from the northern Barberton Greenstone Belt (South Africa). Journal of African Earth Sciences, 2018, 138, 264-288.	0.9	8
105	Drill core LBâ€08A, Bosumtwi impact structure, Ghana: Geochemistry of fallback breccia and basement samples from the central uplift. Meteoritics and Planetary Science, 2007, 42, 689-708.	0.7	7
106	Petrographic and shock metamorphic studies of the impact breccia section (1397–1551 m depth) of the Eyreville drill core, Chesapeake Bay impact structure, USA. , 2009, , .		7
107	The Erbisberg drilling 2011: Implications for the structure and postimpact evolution of the inner ring of the Ries impact crater. Meteoritics and Planetary Science, 2019, 54, 2448-2482.	0.7	7
108	Bosumtwi impact structure, Ghana: Evidence for fluidized emplacement of the ejecta. Meteoritics and Planetary Science, 2019, 54, 2541-2556.	0.7	7

#	Article	IF	CITATIONS
109	Archean spherule beds: Impact or terrestrial origin? Reply to the comment by A. Glikson. Earth and Planetary Science Letters, 1994, 126, 497-499.	1.8	6
110	Comment on â€~Planar lamellar substructures in quartz' by J.B. Lyons, C.B. Officer, P.E. Borella and R. Lahodynsky. Earth and Planetary Science Letters, 1994, 125, 473-477.	1.8	6
111	Geophysical signature of the Pretoria Saltpan impact structure and a possible satellite crater. Meteoritics, 1994, 29, 379-384.	1.5	6
112	Breccias resembling melt bombs from the Roter Kamm Crater. Meteoritics and Planetary Science, 1996, 31, 413-415.	0.7	6
113	The 2011 expedition to the El'gygytgyn impact structure, Northeast Russia: Toward a new geological map for the crater area. Meteoritics and Planetary Science, 2014, 49, 978-1006.	0.7	6
114	Microcomputed tomography and shock microdeformation studies on shatter cones. Meteoritics and Planetary Science, 2016, 51, 1435-1459.	0.7	6
115	Localized shockâ€induced melting of sandstone at low shock pressures (<17.5 <scp>GP</scp> a): An experimental study. Meteoritics and Planetary Science, 2018, 53, 1633-1643.	0.7	6
116	Geophysical investigation of the Colônia structure, Brazil. Meteoritics and Planetary Science, 2019, 54, 2357-2372.	0.7	6
117	U–Pb and Hf isotopes in granitoids from the Eastern Bolivian basement: Insights into the Paleoproterozoic evolution of the western part of South America. Journal of South American Earth Sciences, 2020, 104, 102806.	0.6	6
118	Geochemical studies of the <scp>SUBO</scp> 18 (Enkingen) drill core and other impact breccias from the Ries crater, Germany. Meteoritics and Planetary Science, 2013, 48, 1531-1571.	0.7	5
119	Comment on: "Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska eventâ€, by P. Vannucchi et al. [Earth Planet. Sci. Lett. 409 (2015) 168–174]. Earth and Planetary Science Letters, 2015, 419, 222-223.	1.8	5
120	Prospecting for possible impact structures in Morocco. Journal of African Earth Sciences, 2015, 112, 339-352.	0.9	5
121	Morphometric analysis and classification of the threeâ€dimensional geometry of shatter cones. Meteoritics and Planetary Science, 2016, 51, 1460-1476.	0.7	5
122	Comment on "Geophysical evidence for a large impact structure on the Falkland (Malvinas) Plateau― Terra Nova, 2017, 29, 409-410.	0.9	5
123	Transmission electron microscopy of impactâ€generated platinum group element alloys from Barberton spherule layers: New clues to their formation. Meteoritics and Planetary Science, 2018, 53, 1516-1536.	0.7	5
124	Meteoritic highly siderophile element and Reâ€Os isotope signatures of Archean spherule layers from the <scp>CT</scp> 3 drill core, Barberton Greenstone Belt, South Africa. Meteoritics and Planetary Science, 2019, 54, 2203-2216.	0.7	5
125	Insights about the formation of a complex impact structure formed in basalt from numerical modeling: The Vista Alegre structure, southern Brazil. Meteoritics and Planetary Science, 2019, 54, 2373-2383.	0.7	5
126	Evidence for shockâ€induced anhydrite recrystallization and decomposition at the UNAMâ€7 drill core from the Chicxulub impact structure. Meteoritics and Planetary Science, 2019, 54, 2334-2356.	0.7	5

#	Article	IF	CITATIONS
127	Geological investigation of the central portion of the Santa Marta impact structure, PiauÃ-State, Brazil. Brazilian Journal of Geology, 2017, 47, 673-692.	0.3	4
128	Characteristic landforms and geomorphic features associated with impact structures: Observations at the Dhala structure, northâ€central India. Earth Surface Processes and Landforms, 2021, 46, 1482-1503.	1.2	4
129	Genesis of the mafic granophyre of the Vredefort impact structure (South Africa): Implications of new geochemical and Se and Re-Os isotope data. , 2021, , .		4
130	Geochemical studies of impact breccias and country rocks from the El'gygytgyn impact structure, Russia. Meteoritics and Planetary Science, 2015, 50, 1071-1088.	0.7	3
131	Does the metavolcanic-sedimentary Rio do Coco Group, Araguaia Belt, Brazil, represent a continuity of the Quatipuru ophiolitic complex? – Constraints from U-Pb and Sm-Nd isotope data. Journal of South American Earth Sciences, 2019, 94, 102233.	0.6	3
132	Petrographic characterization of Archaean impact spherule layers from Fairview Gold Mine, northern Barberton Greenstone Belt, South Africa. Journal of African Earth Sciences, 2020, 162, 103718.	0.9	3
133	The TanDEM-X Digital Elevation Model and Terrestrial Impact Structures. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 4128-4138.	2.3	3
134	Impact Craters and Meteorites: The Egyptian Record. Regional Geology Reviews, 2020, , 415-444.	1.2	3
135	The origin of the potassiumâ€rich annular zones at the Bosumtwi impact structure, Ghana, investigated by field study, radiometric analysis, and first cosmogenic nuclide data. Meteoritics and Planetary Science, 2022, 57, 702-729.	0.7	3
136	Post-Impact Hydrothermal Activity in Meteorite Impact Craters and Potential Opportunities for Life. Symposium - International Astronomical Union, 2004, 213, 299-304.	0.1	2
137	The Impact Record of Southwest Gondwana. Regional Geology Reviews, 2018, , 677-688.	1.2	2
138	Comment on "Anatomy of impactites and shocked zircon grains from Dhala reveals Paleoproterozoic meteorite impact in the Archean basement rocks of Central India―by Li et al., 2018, Gondwana Research, 54, 81–101. Gondwana Research, 2018, 60, 214-217.	3.0	2
139	Anisotropy of magnetic susceptibility (AMS) of impact melt breccia and target rocks from the Dhala impact structure, India. , 2021, , 351-371.		2
140	Conference report: Large Meteorite Impacts and Planetary Evolution VI. Meteoritics and Planetary Science, 2020, 55, 245-250.	0.7	1
141	The Neoproterozoic-lower Paleozoic sequence of the Sierra de Mojotoro, Eastern Cordillera: Sedimentary provenance (Sr–Nd, U–Pb, and clay mineralogy) and its tectonic implications for western Gondwana. Journal of South American Earth Sciences, 2020, 104, 102818.	0.6	1
142	Cerro do Jarau, RS, Brazil, is a bona fide impact structure – Not a cryptoexplosion structure as alleged. [Comment on "Resurfaced paleodunes from the Botucatu erg amid Cretaceous ParanÃi volcanics―by , Geomorphology (2021), doi:10.1016/j.geomorph.2021.107893]. Geomorphology, 2021, 401, 108004.	1.1	1
143	Nova Colinas, MaranhÃ \pounds o State: A newly confirmed, complex impact structure in Brazil. Meteoritics and Planetary Science, 0, , .	0.7	1
144	Impact Cratering and Its Planetary and Environmental Effects: Large Meteorite Impacts and Planetary Evolution W: Vredefort Dome, South Africa, 178€"21 August 2008, Fos, 2009, 90, 4	0.1	0

#	Article	IF	CITATIONS
145	Reply to "Comments on "The impact pseudotachylitic breccia controversy: Insights from first isotope analysis of Vredefort impact-generated melt rocks―by Reimold et al. 2017 (GCA 214, 266–282)―by A.A. Garde and M.B. Klausen (GCA 233, 187–190). Geochimica Et Cosmochimica Acta, 2018, 240, 331-332.	1.6	0
146	Scientific Comment on KlokoÄnÃk et al. "Support for two subglacial impact craters in northwest Greenland from Earth gravity model EIGEN 6C4 and other data― Tectonophysics 780 (2020), 228396. Tectonophysics, 2021, 800, 228578.	0.9	0
147	Terrestrial and extraterrestrial chemical components of early Archean impact spherule layers from Fairview Gold Mine, northern Barberton greenstone belt, South Africa. , 2021, , .		0
148	Dedication of Large Meteorite Impacts and Planetary Evolution VI to Ākvaro Penteado Crósta. , 2021, , vii-xi.		0
149	Hydrothermal alteration at the basaltâ€hosted Vista Alegre impact structure, Brazil. Meteoritics and Planetary Science, 2021, 56, 2155-2174.	0.7	0
150	The Cerro Uyarani Metamorphic Complex on the Bolivian Altiplano: New constraints on the tectonic evolution of the Central Andean basement between â^¼1.8 and 1.0â€⁻Ga. Journal of South American Earth Sciences, 2022, , 103843.	0.6	0