Robinson Fulweiler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7598376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rebuilding marine life. Nature, 2020, 580, 39-51.	13.7	560
2	Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 2009, 93, 49-77.	1.7	529
3	Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature, 2007, 448, 180-182.	13.7	182
4	The impact of changing climate on phenology, productivity, and benthic–pelagic coupling in Narragansett Bay. Estuarine, Coastal and Shelf Science, 2009, 82, 1-18.	0.9	158
5	A synthesis of methane emissions from shallow vegetated coastal ecosystems. Global Change Biology, 2020, 26, 2988-3005.	4.2	134
6	Toward the Geoscience Paper of the Future: Best practices for documenting and sharing research from data to software to provenance. Earth and Space Science, 2016, 3, 388-415.	1.1	127
7	Clobal Carbon Cycling on a Heterogeneous Seafloor. Trends in Ecology and Evolution, 2018, 33, 96-105.	4.2	117
8	The Terrestrial Silica Pump. PLoS ONE, 2012, 7, e52932.	1.1	111
9	Ecological control of nitrite in the upper ocean. Nature Communications, 2018, 9, 1206.	5.8	107
10	Evidence and a conceptual model for the co‑occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Marine Ecology - Progress Series, 2013, 482, 57-68.	0.9	107
11	Modeling denitrification in aquatic sediments. Biogeochemistry, 2009, 93, 159-178.	1.7	103
12	Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science, 2022, 376, eabh3767.	6.0	100
13	Promoting inclusive metrics of success and impact to dismantle a discriminatory reward system in science. PLoS Biology, 2021, 19, e3001282.	2.6	98
14	Human activities directly alter watershed dissolved silica fluxes. Biogeochemistry, 2012, 111, 125-138.	1.7	92
15	Methane and Nitrous Oxide Emissions Complicate Coastal Blue Carbon Assessments. Global Biogeochemical Cycles, 2021, 35, e2020GB006858.	1.9	86
16	Directly Measured Denitrification Reveals Oyster Aquaculture and Restored Oyster Reefs Remove Nitrogen at Comparable High Rates. Frontiers in Marine Science, 2016, 3, .	1.2	81
17	Mississippi River Flood of 2008: Observations of a Large Freshwater Diversion on Physical, Chemical, and Biological Characteristics of a Shallow Estuarine Lake. Environmental Science & Technology, 2009, 43, 5599-5604.	4.6	79
18	Terrestrial vegetation and the seasonal cycleof dissolved silica in a southern New Englandcoastal river. Biogeochemistry, 2005, 74, 115-130.	1.7	76

#	Article	IF	CITATIONS
19	Human appropriation of biogenic silicon – the increasing role of agriculture. Functional Ecology, 2016, 30, 1331-1339.	1.7	72
20	Rebuild the Academy: Supporting academic mothers during COVID-19 and beyond. PLoS Biology, 2021, 19, e3001100.	2.6	67
21	Examining the impact of acetylene on N-fixation and the active sediment microbial community. Frontiers in Microbiology, 2015, 6, 418.	1.5	63
22	Sediment Nitrogen Fixation: a Call for Re-evaluating Coastal N Budgets. Estuaries and Coasts, 2016, 39, 1626-1638.	1.0	62
23	Effects of freshwater input on nutrient loading, phytoplankton biomass, and cyanotoxin production in an oligohaline estuarine lake. Hydrobiologia, 2011, 661, 377-389.	1.0	59
24	A critical review of the ¹⁵ N ₂ tracer method to measure diazotrophic production in pelagic ecosystems. Limnology and Oceanography: Methods, 2020, 18, 129-147.	1.0	59
25	Reconsidering Ocean Calamities. BioScience, 2015, 65, 130-139.	2.2	55
26	Spartina alterniflora and invasive Phragmites australis stands have similar greenhouse gas emissions in a New England marsh. Aquatic Botany, 2014, 116, 83-92.	0.8	52
27	Low Greenhouse Gas Emissions from Oyster Aquaculture. Environmental Science & Technology, 2019, 53, 9118-9127.	4.6	52
28	Denitrification in coastal Louisiana: A spatial assessment and research needs. Journal of Sea Research, 2010, 63, 157-172.	0.6	51
29	Net Sediment N2 Fluxes in a Coastal Marine System—Experimental Manipulations and a Conceptual Model. Ecosystems, 2008, 11, 1168-1180.	1.6	50
30	Nitrogen and Phosphorus Inputs to Narragansett Bay: Past, Present, and Future. , 2008, , 101-175.		50
31	The Declining Role of Organic Matter in New England Salt Marshes. Estuaries and Coasts, 2017, 40, 626-639.	1.0	47
32	Responses of benthic–pelagic coupling to climate change in a temperate estuary. Hydrobiologia, 2009, 629, 147-156.	1.0	44
33	Spatial and Temporal Variability of Benthic Oxygen Demand and Nutrient Regeneration in an Anthropogenically Impacted New England Estuary. Estuaries and Coasts, 2010, 33, 1377-1390.	1.0	42
34	Watershed land use alters riverine silica cycling. Biogeochemistry, 2013, 113, 525-544.	1.7	41
35	The relationships among hydrodynamics, sediment distribution, and chlorophyll in a mesotidal estuary. Estuarine, Coastal and Shelf Science, 2014, 144, 54-64.	0.9	41
36	Whole truths vs. half truths – And a search for clarity in long-term water temperature records. Estuarine, Coastal and Shelf Science, 2015, 157, A1-A6.	0.9	38

#	Article	IF	CITATIONS
37	Assessing the Role of pH in Determining Water Column Nitrification Rates in a Coastal System. Estuaries and Coasts, 2011, 34, 1095-1102.	1.0	36
38	Molecular evidence for sediment nitrogen fixation in a temperate New England estuary. PeerJ, 2016, 4, e1615.	0.9	36
39	Coastal water column ammonium and nitrite oxidation are decoupled in summer. Estuarine, Coastal and Shelf Science, 2016, 178, 110-119.	0.9	35
40	A Review of the Emerging Field of Underwater Mass Spectrometry. Frontiers in Marine Science, 2016, 3,	1.2	32
41	Meta-analysis of oyster impacts on coastal biogeochemistry. Nature Sustainability, 2021, 4, 261-269.	11.5	32
42	The ebb and flood of Silica: Quantifying dissolved and biogenic silica fluxes from a temperate salt marsh. Estuarine, Coastal and Shelf Science, 2011, 95, 415-423.	0.9	31
43	Net sediment N2 fluxes in a southern New England estuary: variations in space and time. Biogeochemistry, 2012, 111, 111-124.	1.7	28
44	Sediment Nitrous Oxide Fluxes Are Dominated by Uptake in a Temperate Estuary. Frontiers in Marine Science, 2016, 3, .	1.2	28
45	(Nearly) A Decade of Directly Measured Sediment N2 Fluxes: What Can Narragansett Bay Tell Us About the Global Ocean Nitrogen Budget?. Oceanography, 2014, 27, 184-195.	0.5	28
46	Silica uptake by Spartinaââ,¬â€evidence of multiple modes of accumulation from salt marshes around the world. Frontiers in Plant Science, 2014, 5, 186.	1.7	27
47	Impacts of long-term fertilization on salt marsh tidal creek benthic nutrient and N _{2 gas fluxes. Marine Ecology - Progress Series, 2012, 471, 11-22.}	0.9	27
48	Nitrogen enrichment increases net silica accumulation in a temperate salt marsh. Limnology and Oceanography, 2013, 58, 99-111.	1.6	26
49	Estuarine Sediments Exhibit Dynamic and Variable Biogeochemical Responses to Hypoxia. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 737-758.	1.3	26
50	Export of Nitrogen, Phosphorus, and Suspended Solids from a Southern New England Watershed to Little Narragansett Bay. Biogeochemistry, 2005, 76, 567-593.	1.7	25
51	Directly measured net denitrification rates in offshore New England sediments. Continental Shelf Research, 2012, 45, 78-86.	0.9	23
52	Ecological footprints and shadows in an urban estuary, Narragansett Bay, RI (USA). Regional Environmental Change, 2012, 12, 381-394.	1.4	23
53	Spatial and historic variability of benthic nitrogen cycling in an anthropogenically impacted estuary. Frontiers in Marine Science, 2014, 1, .	1.2	23
54	Nitrogen fixation: A poorly understood process along the freshwaterâ€marine continuum. Limnology and Oceanography Letters, 2022, 7, 1-10.	1.6	22

#	Article	IF	CITATIONS
55	Salt marsh tidal exchange increases residence time of silica in estuaries. Limnology and Oceanography, 2014, 59, 1203-1212.	1.6	21
56	Does elevated CO2 alter silica uptake in trees?. Frontiers in Plant Science, 2014, 5, 793.	1.7	20
57	Low ratios of silica to dissolved nitrogen supplied to rivers arise from agriculture not reservoirs. Ecology Letters, 2016, 19, 1414-1418.	3.0	19
58	Fate and Effect of Dissolved Silicon within Wastewater Treatment Effluent. Environmental Science & Technology, 2017, 51, 7403-7411.	4.6	19
59	Nitrogen and phosphorus cycling in the digestive system and shell biofilm of the eastern oyster Crassostrea virginica. Marine Ecology - Progress Series, 2019, 621, 95-105.	0.9	19
60	Winter climate change and fine root biogenic silica in sugar maple trees (Acer saccharum): Implications for silica in the Anthropocene. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 708-715.	1.3	18
61	The eutrophication commandments. Marine Pollution Bulletin, 2012, 64, 1997-1999.	2.3	17
62	Telepresence is a potentially transformative tool for field science. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4841-4844.	3.3	17
63	Incomplete tidal restoration may lead to persistent high CH ₄ emission. Ecosphere, 2017, 8, e01968.	1.0	17
64	Salt Marsh Greenhouse Gas Fluxes and Microbial Communities Are Not Sensitive to the First Year of Precipitation Change. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1071-1087.	1.3	17
65	Urban Dissolved Silica: Quantifying the Role of Groundwater and Runoff in Wastewater Influent. Environmental Science & Technology, 2016, 50, 54-61.	4.6	16
66	Sediment biogeochemistry along an oyster aquaculture chronosequence. Marine Ecology - Progress Series, 2020, 646, 13-27.	0.9	16
67	Ideas and perspectives: A strategic assessment of methane and nitrous oxide measurements in the marine environment. Biogeosciences, 2020, 17, 5809-5828.	1.3	16
68	Tidal pulsing alters nitrous oxide fluxes in a temperate intertidal mudflat. Ecology, 2014, 95, 1960-1971.	1.5	15
69	Opportunities and Challenges for Including Oyster-Mediated Denitrification in Nitrogen Management Plans. Estuaries and Coasts, 2021, 44, 2041-2055.	1.0	15
70	Benthic metabolism and nutrient regeneration in hydrographically different regions on the inner continental shelf of Southern New England. Estuarine, Coastal and Shelf Science, 2014, 148, 14-26.	0.9	14
71	A review of how we assess denitrification in oyster habitats and proposed guidelines for future studies. Limnology and Oceanography: Methods, 2021, 19, 714-731.	1.0	13
72	The effect of evaporation on the erodibility of mudflats in a mesotidal estuary. Estuarine, Coastal and Shelf Science, 2017, 194, 118-127.	0.9	12

#	Article	IF	CITATIONS
73	Fantastic Fixers. Science, 2009, 326, 377-378.	6.0	11
74	Beyond Bioextraction: The Role of Oyster-Mediated Denitrification in Nutrient Management. Environmental Science & Technology, 2021, 55, 14457-14465.	4.6	11
75	12.13 Ecogeomorphology of Tidal Flats. , 2013, , 201-220.		10
76	Soil Warming Accelerates Biogeochemical Silica Cycling in a Temperate Forest. Frontiers in Plant Science, 2019, 10, 1097.	1.7	10
77	Responses of benthic-pelagic coupling to climate change in a temperate estuary. , 2009, , 147-156.		9
78	12.12 Ecogeomorphology of Salt Marshes. , 2013, , 182-200.		8
79	Urban groundwater dissolved silica concentrations are elevated due to vertical composition of historic land-filling. Science of the Total Environment, 2019, 684, 89-95.	3.9	7
80	Seasonal patterns of benthic-pelagic coupling in oyster habitats. Marine Ecology - Progress Series, 2020, 652, 95-109.	0.9	7
81	Greenhouse Gas Emissions From Native and Non-native Oysters. Frontiers in Environmental Science, 2019, 7, .	1.5	6
82	Tidal rewetting in salt marshes triggers pulses of nitrous oxide emissions but slows carbon dioxide emission. Soil Biology and Biochemistry, 2021, 156, 108197.	4.2	6
83	A case for addressing the unresolved role of permeable shelf sediments in ocean denitrification. Limnology and Oceanography Letters, 2022, 7, 11-25.	1.6	6
84	A workflow for reproducing mean benthic gas fluxes. Earth and Space Science, 2016, 3, 318-325.	1.1	5
85	Negligible Greenhouse Gas Release from Sediments in Oyster Habitats. Environmental Science & Technology, 2021, 55, 14225-14233.	4.6	5
86	Low denitrification rates and variable benthic nutrient fluxes characterize Long Island Sound sediments. Biogeochemistry, 2021, 154, 37-62.	1.7	4
87	High Productivity Makes Mangroves Potentially Important Players in the Tropical Silicon Cycle. Frontiers in Marine Science, 2021, 8, .	1.2	4
88	16S rRNA Amplicon Sequencing of Sediment Bacterial Communities in an Oyster Farm in Rhode Island. Microbiology Resource Announcements, 2019, 8, .	0.3	4
89	Evaluating Connections Between Nitrogen Cycling and the Macrofauna in Native Oyster Beds in a New England Estuary. Estuaries and Coasts, 2022, 45, 196-212.	1.0	3
90	Cold Seeps on the Passive Northern U.S. Atlantic Margin Host Globally Representative Members of the Seep Microbiome with Locally Dominant Strains of Archaea. Applied and Environmental Microbiology, 2022, 88, .	1.4	3

#	Article	IF	CITATIONS
91	Ocean Calamities: Delineating the Boundaries between Scientific Evidence and Belief. BioScience, 2015, 65, 746-747.	2.2	2
92	The Role of Marshes in Coastal Nutrient Dynamics and Loss. , 2021, , 113-154.		2
93	The Nitrogen Cycle. , 2021, , 161-188.		2
94	A mass spectrometerâ€based poreâ€water sampling system for sandy sediments. Limnology and Oceanography: Methods, 2021, 19, 769-784.	1.0	2
95	Marine macroalgae are an overlooked sink of silicon in coastal systems. New Phytologist, 2022, 233, 2330-2336.	3.5	2
96	Explanations for nitrogen decline—Response. Science, 2022, 376, 1170-1170.	6.0	2
97	First, do no harm. Frontiers in Ecology and the Environment, 2013, 11, 59-59.	1.9	1
98	Coastal silicon cycling amplified by oyster aquaculture. Marine Ecology - Progress Series, 2021, 673, 29-41.	0.9	1
99	Variation among Estuarine Geochemistry and Productivity. , 2011, , 87-98.		0
100	CITATION FOR SCIENTIFIC EXCELLENCE: SCOTT W. NIXON. Limnology and Oceanography Bulletin, 2013, 22, 20-21.	0.2	0
101	In Memoriam, Scott M. Nixon (1943–2012). Estuaries and Coasts, 2015, 38, 1123-1125.	1.0	0
102	Corrigendum to "Coastal water column ammonium and nitrite oxidation are decoupled in summerâ€{Estuar. Coast. Shelf Sci. 178 (2016) 110–119]. Estuarine, Coastal and Shelf Science, 2018, 209, 210.	0.9	0
103	Response to concerns and uncertainties relating to methane emissions synthesis for vegetated coastal ecosystems. Clobal Change Biology, 2020, 26, e10-e11.	4.2	0
104	The Oligotrophication of Narragansett Bay. , 2021, , 301-309.		0
105	Influence of Late Holocene climate on Lake Eggers hydrology, McMurdo Sound. Antarctic Science, 2021, 33, 217-229.	0.5	0
106	Greenhouse Gas Concentrations Driven by Microbial Community Structure in Boston Groundwater Wells. FASEB Journal, 2020, 34, 1-1.	0.2	0