Shijun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7598094/publications.pdf

Version: 2024-02-01

94269 98622 4,759 95 37 67 h-index citations g-index papers 4241 95 95 95 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	The potential application of phosphorene as an anode material in Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 19046-19052.	5.2	339
2	Stacking fault energies of face-centered cubic concentrated solid solution alloys. Acta Materialia, 2017, 134, 334-345.	3.8	330
3	Gas adsorption on MoS2 monolayer from first-principles calculations. Chemical Physics Letters, 2014, 595-596, 35-42.	1.2	328
4	Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy. Physical Review Letters, 2017, 118, 205501.	2.9	283
5	Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nature Communications, 2022, 13, 2191.	5.8	179
6	Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys. Current Opinion in Solid State and Materials Science, 2017, 21, 221-237.	5.6	155
7	Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni _{0.5} Co _{0.5} , Ni _{0.5} Fe _{0.5} , Ni _{0.8} Fe _{0.2} and Ni _{0.8} Cr _{0.2} . Physical Chemistry Chemical Physics, 2016, 18, 24043-24056.	1.3	148
8	Manipulation of electronic and magnetic properties of M2C ($M=Hf,Nb,Sc,Ta,Ti,V,Zr$) monolayer by applying mechanical strains. Applied Physics Letters, 2014, 104, .	1.5	139
9	Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr. Acta Materialia, 2017, 128, 391-399.	3.8	124
10	Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations. Journal Physics D: Applied Physics, 2013, 46, 135303.	1.3	116
11	Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys. Journal of Materials Research, 2016, 31, 2363-2375.	1.2	110
12	High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Physical Chemistry Chemical Physics, 2016, 18, 228-233.	1.3	109
13	Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys. Acta Materialia, 2020, 183, 172-181.	3.8	108
14	lon selection of charge-modified large nanopores in a graphene sheet. Journal of Chemical Physics, 2013, 139, 114702.	1.2	95
15	Role of Strain and Concentration on the Li Adsorption and Diffusion Properties on Ti ₂ C Layer. Journal of Physical Chemistry C, 2014, 118, 14983-14990.	1.5	88
16	Local-environment dependence of stacking fault energies in concentrated solid-solution alloys. Npj Computational Materials, 2019, 5, .	3.5	80
17	Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure. Journal of Materials Science and Technology, 2020, 44, 133-139.	5.6	77
18	Effect of <i>d</i> electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys. Physical Review Materials, 2018, 2, .	0.9	72

#	Article	lF	CITATIONS
19	<i>Ab initio</i> study of irradiation tolerance for different Mn+1AXn phases: Ti3SiC2 and Ti3AlC2. Journal of Applied Physics, 2014, 115, .	1.1	69
20	Evolution of local lattice distortion under irradiation in medium- and high-entropy alloys. Materialia, 2018, 2, 73-81.	1.3	67
21	Mechanism of the Defect Formation in Supported Graphene by Energetic Heavy Ion Irradiation: the Substrate Effect. Scientific Reports, 2015, 5, 9935.	1.6	66
22	MXene nanoribbons. Journal of Materials Chemistry C, 2015, 3, 879-888.	2.7	65
23	Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys. Applied Physics Letters, 2017, 110, .	1.5	62
24	Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys. Journal of Alloys and Compounds, 2017, 701, 1003-1008.	2.8	59
25	Fabrication of nanopores in a graphene sheet with heavy ions: A molecular dynamics study. Journal of Applied Physics, 2013, 114, .	1.1	55
26	Facile, cost-effective plasma synthesis of self-supportive FeS $<$ sub $>$ x $<$ /sub $>$ on Fe foam for efficient electrochemical reduction of N $<$ sub $>$ 2 $<$ /sub $>$ under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 19977-19983.	5.2	50
27	Lattice distortion in highâ€entropy carbide ceramics from firstâ€principles calculations. Journal of the American Ceramic Society, 2021, 104, 1874-1886.	1.9	50
28	Effect of SiO ₂ substrate on the irradiation-assisted manipulation of supported graphene: a molecular dynamics study. Nanotechnology, 2012, 23, 285703.	1.3	47
29	Irradiation responses and defect behavior of single-phase concentrated solid solution alloys. Journal of Materials Research, 2018, 33, 3077-3091.	1.2	47
30	Suppression of vacancy cluster growth in concentrated solid solution alloys. Acta Materialia, 2017, 125, 231-237.	3.8	45
31	A comparison study of local lattice distortion in Ni80Pd20 binary alloy and FeCoNiCrPd high-entropy alloy. Scripta Materialia, 2018, 156, 14-18.	2.6	45
32	Drilling Nanopores in Graphene with Clusters: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2012, 116, 11776-11782.	1.5	44
33	Helium irradiated cavity formation and defect energetics in Ni-based binary single-phase concentrated solid solution alloys. Acta Materialia, 2019, 164, 283-292.	3.8	44
34	Strengthening in Al-, Mo- or Ti-doped CoCrFeNi high entropy alloys: A parallel comparison. Journal of Materials Science and Technology, 2021, 94, 264-274.	5.6	44
35	Modification of graphene supported on SiO2 substrate with swift heavy ions from atomistic simulation point. Carbon, 2015, 93, 169-179.	5.4	42
36	Diffusion controlled helium bubble formation resistance of FeCoNiCr high-entropy alloy in the half-melting temperature regime. Journal of Nuclear Materials, 2019, 526, 151747.	1.3	40

#	Article	IF	CITATIONS
37	Delayed damage accumulation by athermal suppression of defect production in concentrated solid solution alloys. Materials Research Letters, 2018, 6, 136-141.	4.1	39
38	Phase, microstructure and related mechanical properties of a series of (NbTaZr)C-Based high entropy ceramics. Ceramics International, 2021, 47, 14341-14347.	2.3	38
39	Frenkel defect recombination in Ni and Ni‒containing concentrated solid‒solution alloys. Acta Materialia, 2019, 173, 184-194.	3.8	37
40	Design high-entropy carbide ceramics from machine learning. Npj Computational Materials, 2022, 8, .	3 . 5	37
41	Defect accumulation and evolution in refractory multi-principal element alloys. Acta Materialia, 2021, 219, 117233.	3.8	36
42	Strain-tunable electronic properties and lithium storage of 2D transition metal carbide (MXene) Ti ₂ CO ₂ as a flexible electrode. Journal of Materials Chemistry A, 2020, 8, 760-769.	5.2	35
43	Unique Challenges for Modeling Defect Dynamics in Concentrated Solid-Solution Alloys. Jom, 2017, 69, 2084-2091.	0.9	33
44	Diffusion of point defects in ordered and disordered Ni–Fe alloys. Journal of Alloys and Compounds, 2019, 805, 1175-1183.	2.8	33
45	Microalloyed medium-entropy alloy (MEA) composite nanolattices with ultrahigh toughness and cyclability. Materials Today, 2021, 42, 10-16.	8.3	32
46	High-entropy carbide ceramics: a perspective review. Tungsten, 2021, 3, 131-142.	2.0	31
47	Effect of silicon addition on the microstructures, mechanical properties and helium irradiation resistance of NiCoCr-based medium-entropy alloys. Journal of Alloys and Compounds, 2020, 844, 156162.	2.8	30
48	Link between <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math> absorption edges and thermodynamic properties of warm dense plasmas established by an improved first-principles method. Physical Review B, 2016, 93, .	1.1	28
49	Elemental partitions and deformation mechanisms of L12-type multicomponent intermetallics. Acta Materialia, 2021, 219, 117238.	3.8	28
50	Comparison of electronic energy loss in graphene and BN sheet by means of time-dependent density functional theory. Journal of Physics Condensed Matter, 2015, 27, 025401.	0.7	27
51	Tuning the band gap of bilayer graphene by ion implantation: Insight from computational studies. Physical Review B, 2012, 86, .	1.1	26
52	Effects of local elemental ordering on defect-grain boundary interactions in high-entropy alloys. Journal of Alloys and Compounds, 2021, 887, 161314.	2.8	22
53	First-principles study of He behavior in a NiCoFeCr concentrated solid–solution alloy. Materials Research Letters, 2019, 7, 188-193.	4.1	21
54	Defect-Mediated Adsorption of Metal Ions for Constructing Ni Hydroxide/MoS ₂ Heterostructures as High-Performance Water-Splitting Electrocatalysts. ACS Applied Energy Materials, 2020, 3, 7039-7047.	2.5	20

#	Article	IF	CITATIONS
55	Application of machine learning in understanding the irradiation damage mechanism of high-entropy materials. Journal of Nuclear Materials, 2022, 559, 153462.	1.3	18
56	First-principles investigation of the intrinsic defects in Ti3SiC2. Journal of Physics and Chemistry of Solids, 2014, 75, 384-390.	1.9	17
57	Revealing the crucial role of rough energy landscape on self-diffusion in high-entropy alloys based on machine learning and kinetic Monte Carlo. Acta Materialia, 2022, 234, 118051.	3.8	17
58	Role of chemical disorder and local ordering on defect evolution in high-entropy alloys. Physical Review Materials, 2021, 5, .	0.9	16
59	Chemical short-range ordering regulated dislocation cross slip in high-entropy alloys. Journal of Alloys and Compounds, 2022, 911, 165144.	2.8	16
60	Stability of vacancy-type defect clusters in Ni based on first-principles and molecular dynamics simulations. Scripta Materialia, 2018, 145, 71-75.	2.6	15
61	Fluctuations in stacking fault energies improve irradiation tolerance of concentrated solid-solution alloys. Journal of Nuclear Materials, 2020, 530, 151886.	1.3	15
62	On the role of heterogeneity in concentrated solid-solution alloys in enhancing their irradiation resistance. Journal of Materials Research, 2020, 35, 1103-1112.	1.2	15
63	Effects of minor alloying addition on He bubble formation in the irradiated FeCoNiCr-based high-entropy alloys. Journal of Nuclear Materials, 2020, 542, 152458.	1.3	15
64	Local Ordering Tendency in Body-Centered Cubic (BCC) Multi-Principal Element Alloys. Journal of Phase Equilibria and Diffusion, 2021, 42, 578-591.	0.5	15
65	Toughening (NbTaZrW)C highâ€entropy carbide ceramic through Mo doping. Journal of the American Ceramic Society, 2022, 105, 5395-5407.	1.9	15
66	He-enhanced heterogeneity of radiation-induced segregation in FeNiCoCr high-entropy alloy. Journal of Materials Science and Technology, 2022, 101, 226-233.	5.6	14
67	Alloying effects on lowâ€'energy recoil events in concentrated solidâ€'solution alloys. Journal of Nuclear Materials, 2020, 529, 151941.	1.3	12
68	The stability of $\hat{I}^3 \hat{a} \in \mathcal{I}$ precipitates in a multi-component FeCoNiCrTi0.2 alloy under elevated-temperature irradiation. Journal of Nuclear Materials, 2020, 540, 152364.	1.3	12
69	Structural and chemical disorder enhance point defect diffusion and atomic transport in Ni3Al-based γ′ phase. Acta Materialia, 2021, 207, 116704.	3.8	11
70	Local structure of NiPd solid solution alloys and its response to ion irradiation. Journal of Alloys and Compounds, 2018, 755, 242-250.	2.8	10
71	Self-irradiation of thin SiC nanowires with low-energy ions: a molecular dynamics study. Journal Physics D: Applied Physics, 2012, 45, 135403.	1.3	9
72	H+ (D+, T+)–beryllium collisions studied using time-dependent density functional theory. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 319-326.	0.9	9

#	Article	IF	Citations
73	Engineering defect energy landscape of CoCrFeNi high-entropy alloys by the introduction of additional dopants. Journal of Nuclear Materials, 2022, 561, 153573.	1.3	9
74	Influence of high pressure on the threshold displacement energies in silicon carbide: A Car–Parrinello molecular dynamics approach. Nuclear Instruments & Methods in Physics Research B, 2012, 286, 119-123.	0.6	8
75	First-principles calculation of principal Hugoniot and K-shell X-ray absorption spectra for warm dense KCl. Physics of Plasmas, 2015, 22, 062707.	0.7	8
76	First-Principles Investigation to Ionization of Argon Under Conditions Close to Typical Sonoluminescence Experiments. Scientific Reports, 2016, 6, 20623.	1.6	8
77	High Entropy Alloys: Irradiation. , 2020, , .		8
78	Effects of temperature on helium cavity evolution in single-phase concentrated solid-solution alloys. Journal of Nuclear Materials, 2021, 557, 153261.	1.3	8
79	Defect energetics and stacking fault formation in high-entropy carbide ceramics. Journal of the European Ceramic Society, 2022, 42, 5290-5302.	2.8	8
80	Chemical bonding assisted damage production in single-walled carbon nanotubes induced by low-energy ions. Applied Physics A: Materials Science and Processing, 2012, 108, 313-320.	1.1	7
81	Ab Initio Study of Electronic Excitation Effects on SrTiO ₃ . Journal of Physical Chemistry C, 2017, 121, 26622-26628.	1.5	7
82	Atomistic insight into the effects of order, disorder and their interface on defect evolution. Journal of Alloys and Compounds, 2021, 859, 157770.	2.8	7
83	Study on the effect of pressure on the properties of intrinsic point defects in monoclinic zirconia: <i>Ab initio</i> calculations. Journal of Applied Physics, 2012, 111, .	1.1	6
84	Enhanced recombination suppresses the void swelling in bcc multi-component alloys. Materialia, 2021, 20, 101234.	1.3	6
85	Softening Al13Fe4 intermetallic compound through Fe-site multi-principal-element doping. Scripta Materialia, 2022, 218, 114811.	2.6	6
86	Instability-free ion acceleration by two laser pulses. European Physical Journal: Special Topics, 2014, 223, 1031-1035.	1.2	5
87	Atomistic simulation of defect-dislocation interactions in concentrated solid-solution alloys. Physical Review Materials, 2019, 3, .	0.9	5
88	Manipulating the Resistive Switching in Epitaxial SrCoO _{2.5} Thin-Film-Based Memristors by Strain Engineering. ACS Applied Electronic Materials, 2022, 4, 2729-2738.	2.0	5
89	X-ray absorption investigation of local structural disorder in Ni1-xFex (x = 0.10, 0.20, 0.35, and 0.50) alloys. Journal of Applied Physics, 2017, 121, 165105.	1.1	4
90	Temperature-dependent helium induced microstructural evolution in equiatomic NiCo and NiFe concentrated solid solution alloys. Journal of Nuclear Materials, 2021, 545, 152715.	1.3	4

SHIJUN ZHAO

#	Article	IF	CITATIONS
91	Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni–Fe–Cr alloys*. Chinese Physics B, 2021, 30, 056111.	0.7	4
92	Defect evolution mechanism in U3Si2 from molecular dynamics simulations. Journal of Nuclear Materials, 2020, 537, 152238.	1.3	4
93	A Model for Dose Dependence of the Void Swelling in Electron-Irradiated Alloys. Metals, 2022, 12, 244.	1.0	3
94	Additivity of kinetic and potential energy contributions in modification of graphene supported onSiO2. Nuclear Instruments & Methods in Physics Research B, 2017, 397, 62-66.	0.6	2
95	Effects of local chemical ordering on defect evolution in NiFe concentrated solid solution alloy. Journal of Nuclear Materials, 2022, 568, 153877.	1.3	2