List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7598043/publications.pdf Version: 2024-02-01

Δαιίονα Μεμτά

#	Article	IF	CITATIONS
1	Discovering exceptionally hard and wear-resistant metallic glasses by combining machine-learning with high throughput experimentation. Applied Physics Reviews, 2022, 9, .	11.3	12
2	Physics in the Machine: Integrating Physical Knowledge in Autonomous Phase-Mapping. Frontiers in Physics, 2022, 10, .	2.1	6
3	CeO ₂ Doping of Hf _{0.5} Zr _{0.5} O ₂ Thin Films for High Endurance Ferroelectric Memories. Advanced Electronic Materials, 2022, 8, .	5.1	5
4	Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature, 2022, 604, 65-71.	27.8	108
5	Towards Automated Design of Corrosion Resistant Alloy Coatings with an Autonomous Scanning Droplet Cell. Jom, 2022, 74, 2941-2950.	1.9	7
6	Thin-Film Paradigm to Probe Interfacial Diffusion during Solid-State Metathesis Reactions. Chemistry of Materials, 2022, 34, 6279-6287.	6.7	3
7	Characterization data of an (AlFeNiTiVZr)1-xCrx multi-principal element alloy continuous composition spread library. Data in Brief, 2021, 34, 106758.	1.0	1
8	In Situ Characterization of Ferroelectric HfO ₂ During Rapid Thermal Annealing. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000598.	2.4	12
9	A refraction correction for buried interfaces applied to <i>in situ</i> grazing-incidence X-ray diffraction studies on Pd electrodes. Journal of Synchrotron Radiation, 2021, 28, 919-923.	2.4	6
10	Phase stabilization and oxidation of a continuous composition spread multi-principal element (AlFeNiTiVZr)1â^'xCrx alloy. Journal of Alloys and Compounds, 2021, 861, 158565.	5.5	5
11	Cation and anion topotactic transformations in cobaltite thin films leading to Ruddlesden-Popper phases. Physical Review Materials, 2021, 5, .	2.4	7
12	Dynamics and Hysteresis of Hydrogen Intercalation and Deintercalation in Palladium Electrodes: A Multimodal <i>In Situ</i> X-ray Diffraction, Coulometry, and Computational Study. Chemistry of Materials, 2021, 33, 5872-5884.	6.7	11
13	Highly Efficient Uniaxial Inâ€Plane Stretching of a 2D Material via Ion Insertion. Advanced Materials, 2021, 33, e2101875.	21.0	16
14	Autonomous experimentation systems for materials development: A community perspective. Matter, 2021, 4, 2702-2726.	10.0	143
15	Oxidation State and Surface Reconstruction of Cu under CO ₂ Reduction Conditions from <i>In Situ</i> X-ray Characterization. Journal of the American Chemical Society, 2021, 143, 588-592.	13.7	172
16	On-the-fly closed-loop materials discovery via Bayesian active learning. Nature Communications, 2020, 11, 5966.	12.8	167
17	Exploring the First High-Entropy Thin Film Libraries: Composition Spread-Controlled Crystalline Structure. ACS Combinatorial Science, 2020, 22, 858-866.	3.8	19
18	Combinatorial Exploration and Mapping of Phase Transformation in a Ni–Ti–Co Thin Film Library. ACS Combinatorial Science, 2020, 22, 641-648.	3.8	10

#	Article	IF	CITATIONS
19	Controlling Magnetization Vector Depth Profiles of La _{0.7} Sr _{0.3} CoO ₃ /La _{0.7} Sr _{0.3} MnO ₃ Exchange Spring Bilayers via Interface Reconstruction. ACS Applied Materials & amp; Interfaces, 2020, 12, 45437-45443.	8.0	16
20	Identifying and Tuning the In Situ Oxygen-Rich Surface of Molybdenum Nitride Electrocatalysts for Oxygen Reduction. ACS Applied Energy Materials, 2020, 3, 12433-12446.	5.1	17
21	Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nature Catalysis, 2020, 3, 516-525.	34.4	166
22	A High-Throughput Structural and Electrochemical Study of Metallic Glass Formation in Ni–Ti–Al. ACS Combinatorial Science, 2020, 22, 330-338.	3.8	31
23	High-throughput characterization of Ag–V–O nanostructured thin-film materials libraries for photoelectrochemical solar water splitting. International Journal of Hydrogen Energy, 2020, 45, 12037-12047.	7.1	10
24	Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 2946-2960.	6.7	57
25	Visualizing Energy Transfer at Buried Interfaces in Layered Materials Using Picosecond Xâ€Rays. Advanced Functional Materials, 2020, 30, 2002282.	14.9	11
26	Structural and photoelectrochemical properties in the thin film system Cu–Fe–V–O and its ternary subsystems Fe–V–O and Cu–V–O. Journal of Chemical Physics, 2020, 153, 014707.	3.0	7
27	In Situ X-Ray Absorption Spectroscopy Disentangles the Roles of Copper and Silver in a Bimetallic Catalyst for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 1819-1827.	6.7	30
28	High-Throughput Exploration of Lithium-Alloy Protection Layers for High-Performance Lithium-Metal Batteries. ACS Applied Energy Materials, 2020, 3, 2547-2555.	5.1	4
29	Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature, 2020, 580, 478-482.	27.8	486
30	High-Throughput Characterization of (Fe _{<i>x</i>} Co _{1–<i>x</i>}) ₃ O ₄ Thin-Film Composition Spreads. ACS Combinatorial Science, 2020, 22, 804-812.	3.8	9
31	Materials science in the artificial intelligence age: high-throughput library generation, machine learning, and a pathway from correlations to the underpinning physics. MRS Communications, 2019, 9, 821-838.	1.8	109
32	Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC. Acta Materialia, 2019, 166, 677-686.	7.9	158
33	Synthesis of Lanthanum Tungsten Oxynitride Perovskite Thin Films. Advanced Electronic Materials, 2019, 5, 1900214.	5.1	15
34	An Inter-Laboratory Study of Zn–Sn–Ti–O Thin Films using High-Throughput Experimental Methods. ACS Combinatorial Science, 2019, 21, 350-361.	3.8	11
35	Absence of Oxidized Phases in Cu under CO Reduction Conditions. ACS Energy Letters, 2019, 4, 803-804.	17.4	97
36	Electrochemical flow cell enabling <i>operando</i> probing of electrocatalyst surfaces by X-ray spectroscopy and diffraction. Physical Chemistry Chemical Physics, 2019, 21, 5402-5408.	2.8	38

#	Article	IF	CITATIONS
37	Decoupling exchange bias and coercivity enhancement in a perovskite oxide exchange spring bilayer. Physical Review Materials, 2019, 3, .	2.4	7
38	Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Science Advances, 2018, 4, eaaq1566.	10.3	354
39	Garnet Electrolyte Surface Degradation and Recovery. ACS Applied Energy Materials, 2018, 1, 7244-7252.	5.1	81
40	Surface Orientation Dependent Water Dissociation on Rutile Ruthenium Dioxide. Journal of Physical Chemistry C, 2018, 122, 17802-17811.	3.1	44
41	Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes. ACS Applied Energy Materials, 2018, 1, 1990-1999.	5.1	40
42	Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery. Molecular Systems Design and Engineering, 2018, 3, 819-825.	3.4	149
43	Ionic tuning of cobaltites at the nanoscale. Physical Review Materials, 2018, 2, .	2.4	32
44	On-the-Fly Data Assessment for High-Throughput X-ray Diffraction Measurements. ACS Combinatorial Science, 2017, 19, 377-385.	3.8	19
45	Enhanced lithium ion transport in garnet-type solid state electrolytes. Journal of Electroceramics, 2017, 38, 168-175.	2.0	22
46	On-the-fly segmentation approaches for x-ray diffraction datasets for metallic glasses. MRS Communications, 2017, 7, 613-620.	1.8	1
47	The Complexity of the CaF ₂ :Yb System: A Huge, Reversible, X-ray-Induced Valence Reduction. Journal of Physical Chemistry C, 2017, 121, 28435-28442.	3.1	17
48	Towards identifying the active sites on RuO ₂ (110) in catalyzing oxygen evolution. Energy and Environmental Science, 2017, 10, 2626-2637.	30.8	278
49	Dynamic Optical Tuning of Interlayer Interactions in the Transition Metal Dichalcogenides. Nano Letters, 2017, 17, 7761-7766.	9.1	46
50	Finding a Needle in the Haystack: Identification of Functionally Important Minority Phases in an Operating Battery. Nano Letters, 2017, 17, 7782-7788.	9.1	42
51	Evidence That the Anomalous Emission from CaF ₂ :Yb ²⁺ Is Not Described by the Impurity Trapped Exciton Model. Journal of Physical Chemistry Letters, 2017, 8, 3313-3316.	4.6	17
52	Monitoring Deformation in Graphene Through Hyperspectral Synchrotron Spectroscopy to Inform Fabrication. Journal of Physical Chemistry C, 2017, 121, 15653-15664.	3.1	3
53	Tuning interfacial exchange interactions via electronic reconstruction in transition-metal oxide heterostructures. Applied Physics Letters, 2016, 109,	3.3	19
54	High Throughput Light Absorber Discovery, Part 2: Establishing Structure–Band Gap Energy Relationships. ACS Combinatorial Science, 2016, 18, 682-688.	3.8	19

#	Article	IF	CITATIONS
55	The Different Roles of Entropy and Solubility in High Entropy Alloy Stability. ACS Combinatorial Science, 2016, 18, 596-603.	3.8	26
56	Unsupervised Data Mining in nanoscale X-ray Spectro-Microscopic Study of NdFeB Magnet. Scientific Reports, 2016, 6, 34406.	3.3	23
57	Voltage-Controlled Interfacial Layering in an Ionic Liquid on SrTiO ₃ . ACS Nano, 2016, 10, 4565-4569.	14.6	29
58	Strontium carbonate nanoparticles for the surface treatment of problematic sulfur and iron in waterlogged archaeological wood. Journal of Cultural Heritage, 2016, 18, 306-312.	3.3	19
59	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">L<mml:msub><mml:mi mathvariant="normal">a<mml:mrow><mml:mn>0.7</mml:mn></mml:mrow></mml:mi </mml:msub><mml:mi mathvariant="normal">S<mml:msub><mml:mi< td=""><td>3.2</td><td>13</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow>	3.2	13
60	mathvariant="normal">rs/mml:mbs/mml:mrow>cmml:mn>0.3c/mml:mrow>c/mml:mrow>c/mml:mi>N A high-throughput investigation of Fe–Cr–Al as a novel high-temperature coating for nuclear cladding materials. Nanotechnology, 2015, 26, 274003.	/In2.6	mi> <mml:ms 28</mml:ms
61	Unconventional switching behavior in La0.7Sr0.3MnO3/La0.7Sr0.3CoO3 exchange-spring bilayers. Applied Physics Letters, 2014, 105, .	3.3	26
62	On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Scientific Reports, 2014, 4, 6367.	3.3	212
63	Full-field XANES analysis of Roman ceramics to estimate firing conditions—A novel probe to study hierarchical heterogeneous materials. Journal of Analytical Atomic Spectrometry, 2013, 28, 1870.	3.0	63
64	Impact of thermomechanical texture on the superelastic response of Nitinol implants. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1431-1439.	3.1	28
65	Giant magnetostriction in annealed Co1â [^] 'xFex thin-films. Nature Communications, 2011, 2, 518.	12.8	188
66	Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. Journal of Synchrotron Radiation, 2011, 18, 773-781.	2.4	228
67	Nanoparticle de-acidification of the Mary Rose. Materials Today, 2011, 14, 354-358.	14.2	31
68	The nature of marbled Terra Sigillata slips: a combined μXRF andÂμXRD investigation. Applied Physics A: Materials Science and Processing, 2010, 99, 419-425.	2.3	24