Gaofeng Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7598006/publications.pdf

Version: 2024-02-01

		361413	,	414414
103	1,356	20		32
papers	citations	h-index		g-index
106	106	106		1289
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Precision deposition of a nanofibre by near-field electrospinning. Journal Physics D: Applied Physics, 2010, 43, 415501.	2.8	119
2	Electrospinning-induced preferred dipole orientation in PVDF fibers. Journal of Materials Science, 2015, 50, 4342-4347.	3.7	86
3	Spectroscopic evidence for a high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers. RSC Advances, 2013, 3, 24952.	3.6	85
4	The Effect of Surfactants on the Diameter and Morphology of Electrospun Ultrafine Nanofiber. Journal of Nanomaterials, 2014, 2014, 1-9.	2.7	43
5	Multistage-Split Ultrafine Fluffy Nanofibrous Membrane for High-Efficiency Antibacterial Air Filtration. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18989-19001.	8.0	42
6	Fabrication of nanochannels via near-field electrospinning. Applied Physics A: Materials Science and Processing, 2012, 108, 825-828.	2.3	40
7	Pulsed electrohydrodynamic printing of conductive silver patterns on demand. Science China Technological Sciences, 2012, 55, 1603-1607.	4.0	40
8	Electrospun Chitosan Nanofiber Membrane for Adsorption of Cu(II) from Aqueous Solution: Fabrication, Characterization and Performance. Journal of Nanoscience and Nanotechnology, 2018, 18, 5624-5635.	0.9	39
9	Self-Powered Electrospun Composite Nanofiber Membrane for Highly Efficient Air Filtration. Nanomaterials, 2020, 10, 1706.	4.1	39
10	Electrohydrodynamic direct-writing ZnO nanofibers for device applications. Materials Letters, 2013, 109, 58-61.	2.6	36
11	Predictable Particle Engineering: Programming the Energy Level, Carrier Generation, and Conductivity of Core–Shell Particles. Journal of the American Chemical Society, 2018, 140, 7629-7636.	13.7	34
12	Electrohydrodynamic direct-writing microfiber patterns under stretching. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	31
13	Direct-writing organic three-dimensional nanofibrous structure. Applied Physics A: Materials Science and Processing, 2011, 102, 457-461.	2.3	27
14	Nanofiber membranes by multi-jet electrospinning arranged as arc-array with sheath gas for electrodialysis applications. Materials and Design, 2020, 189, 108504.	7.0	27
15	Self-cleaning threaded rod spinneret for high-efficiency needleless electrospinning. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	26
16	High-aspect-ratio three-dimensional electrospinning via a tip guiding electrode. Materials and Design, 2021, 198, 109304.	7.0	26
17	Multinozzle high efficiency electrospinning with the constraint of sheath gas. Journal of Applied Polymer Science, 2019, 136, 47574.	2.6	24
18	Simulation and experiment study on adhesive ejection behavior in jetting dispenser. Journal of Adhesion Science and Technology, 2014, 28, 53-64.	2.6	23

#	Article	IF	CITATIONS
19	Directional Transportation in a Self-Pumping Dressing Based on a Melt Electrospinning Hydrophobic Mesh. ACS Biomaterials Science and Engineering, 2021, 7, 5918-5926.	5.2	23
20	Directional Water Transport Janus Composite Nanofiber Membranes for Comfortable Bioprotection. Langmuir, 2022, 38, 309-319.	3.5	23
21	Electrohydrodynamic direct—writing of conductor—insulator-conductor multi-layer interconnection. Chinese Physics B, 2014, 23, 066102.	1.4	21
22	Electrohydrodynamic direct-writing of three-dimensional multi-loop nanofibrous coils. Applied Physics A: Materials Science and Processing, 2014, 116, 171-177.	2.3	21
23	Thin film zinc oxide gas sensor fabricated using near-field electrospray. AIP Advances, 2016, 6, 125306.	1.3	21
24	Laser-Induced-Plasma-Assisted Ablation and Metallization on C-Plane Single Crystal Sapphire (c-Al2O3). Micromachines, 2017, 8, 300.	2.9	20
25	Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes. Journal of Materials Science and Technology, 2021, 82, 135-143.	10.7	19
26	Electrospray Deposition of ZnO Thin Films and Its Application to Gas Sensors. Micromachines, 2018, 9, 66.	2.9	18
27	Arced Multi-Nozzle Electrospinning Spinneret for High-Throughput Production of Nanofibers. Micromachines, 2020, $11,27$.	2.9	18
28	Fabrication of three-dimensional nanofibrous macrostructures by electrospinning. AIP Advances, 2016, 6, 055304.	1.3	16
29	Electrohydrodynamic Direct-Writing Micropatterns with Assisted Airflow. Micromachines, 2018, 9, 456.	2.9	16
30	Surface Functionalization of PEO Nanofibers Using a TiO2 Suspension as Sheath Fluid in a Modified Coaxial Electrospinning Process. Chemical Research in Chinese Universities, 2021, 37, 571-577.	2.6	16
31	Three-dimensional composite electrospun nanofibrous membrane by multi-jet electrospinning with sheath gas for high-efficiency antibiosis air filtration. Nanotechnology, 2021, 32, 245707.	2.6	15
32	Self-Supporting Three-Dimensional Electrospun Nanofibrous Membrane for Highly Efficient Air Filtration. Nanomaterials, 2021, 11, 2567.	4.1	15
33	The Effect of rGO-Doping on the Performance of SnO2/rGO Flexible Humidity Sensor. Nanomaterials, 2021, 11, 3368.	4.1	15
34	Directly electrospun ultrafine nanofibres with Cu grid spinneret. Journal Physics D: Applied Physics, 2011, 44, 135502.	2.8	14
35	Electrospinning jet behaviors under the constraints of a sheath gas. AIP Advances, 2016, 6, .	1.3	14
36	Bead-on-string structure printed by electrohydrodynamic jet under alternating current electric field. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	13

#	Article	IF	CITATIONS
37	Deposition Characteristics of Direct-Write Suspended Micro/Nano-Structures. Advanced Materials Research, 2009, 60-61, 439-444.	0.3	11
38	Improving the performance of IPMCs with a gradient in thickness. Smart Materials and Structures, 2013, 22, 115035.	3. 5	11
39	Current characteristics of various ejection modes in electrohydrodynamic printing. AIP Advances, 2015, 5, 127120.	1.3	11
40	Electrohydrodynamic direct-writing orderly pattern with sheath gas focusing. AIP Advances, 2016, 6, 115304.	1.3	10
41	Study on the air filtration performance of nanofibrous membranes compared with conventional fibrous filters., 2010,,.		9
42	Controlling of Electrospray Deposition for Micropatterns. Micromachines, 2018, 9, 72.	2.9	9
43	Near-Field Electrospinning. , 2019, , 283-319.		9
44	Measurement and Time Response of Electrohydrodynamic Direct-Writing Current. Micromachines, 2019, 10, 90.	2.9	9
45	Electrospun nanofibrous membrane for air filtration., 2007,,.		8
46	Electrohydrodynamic Direct-Write Orderly Micro/Nanofibrous Structure on Flexible Insulating Substrate. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	8
47	Electric-field triggered, on-demand formation of sub-femtoliter droplets. Sensors and Actuators B: Chemical, 2018, 260, 541-553.	7.8	8
48	Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write. AIP Advances, 2018, 8, 015122.	1.3	8
49	Electrospun Three-Dimensional Nanofibrous Structure via Probe Arrays Inducing. Micromachines, 2018, 9, 427.	2.9	8
50	Current characteristics of stable cone–jet in electrohydrodynamic printing process. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	8
51	Fabrication of micro-patterns via near-field electrospray. AIP Advances, 2016, 6, 115002.	1.3	7
52	Jet Mode Recognition of Electrohydrodynamic Direct-Writing Based on Micro/Nano Current. Micromachines, 2020, 11, 128.	2.9	7
53	Melt electrowriting stacked architectures with high aspect ratio. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	7
54	Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2014, 22, 1555-1561.	0.5	7

#	Article	IF	Citations
55	Direct-Write micro/nano-structure for flexible electronic manufacturing. , 2007, , .		6
56	Experiment and simulation of coiled nanofiber deposition behavior from near-field electrospinning. , 2010, , .		6
57	Rheology behaviors of stable electrohydrodynamic direct-write jet. AIP Advances, 2016, 6, .	1.3	6
58	Printing of highly conductive solution by alternating current electrohydrodynamic direct-write. Journal of Physics: Conference Series, 2018, 986, 012027.	0.4	6
59	Formation of suspending beads-on-a-string structure in electrohydrodynamic printing process. Materials and Design, 2021, 204, 109692.	7.0	6
60	Glass frit bonding with controlled width and height using a two-step wet silicon etching procedure. Journal of Micromechanics and Microengineering, 2016, 26, 035018.	2.6	5
61	Simulation of Nanofibers Movement for Near-Field Electrospinning. Advanced Materials Research, 2009, 60-61, 456-460.	0.3	4
62	Research on the Advantages of Nanofibrous Air Filtration Membrane. Key Engineering Materials, 2011, 474-476, 2016-2019.	0.4	4
63	Precise Electrohydrodynamic Direct-Write Micro-Droplets Based on a Designed Sinusoidal High-Voltage AC Power. Instruments, 2020, 4, 7.	1.8	4
64	Highly efficient air-assisted multi-jet electrospinning with curved arranged spinnerets. AIP Advances, 2020, 10, .	1.3	4
65	Surfaced-modified TiO2 Nanofibers with Enhanced Photodegradation Under Visible Light. Chemical Research in Chinese Universities, 2022, 38, 1475-1481.	2.6	4
66	The Behaviors of Direct-Written Nanofibers on Patterned Substrate., 2008, , .		3
67	Direct fabrication of polymer nanofiber membrane for piezoelectric vibration sensor., 2011,,.		3
68	Single-step fabrication of organic nanofibrous membrane for piezoelectric vibration sensor., 2011,,.		3
69	Electrospun nickel oxide nanofibers for gas sensor application. , 2013, , .		3
70	Alternating Current Electrohydrodynamic Printing of Microdroplets. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	3
71	Numerical Simulation of Viscous Jet for Near-Field Electrospinning. Advanced Materials Research, 2009, 60-61, 465-469.	0.3	2
72	Large-scale patterned nanofibers via tip-less electrospinning. , 2010, , .		2

#	Article	IF	CITATIONS
73	The Study of Automatic Programming System for Near-Field Electrospinning Direct Write. Advanced Materials Research, 2011, 197-198, 3-7.	0.3	2
74	Fabrication and morphological control of electrospun ethyl cellulose nanofibers. , 2013, , .		2
75	Multi spinnerets electrospinning with assistant sheath gas. , 2014, , .		2
76	A Study on the Influence of the Nozzle Lead Angle on the Performance of Liquid Metal Electromagnetic Micro-Jetting. Micromachines, 2016, 7, 220.	2.9	2
77	Initial Jet Before the Onset of Effective Electrospinning of Polymeric Nanofibers. The Open Mechanical Engineering Journal, 2015, 9, 666-669.	0.3	2
78	Buckling nanofiber on patterned substrate from near-field electrospinning. , 2010, , .		1
79	Bead-on-string structure formed by electrohydrodynamic printing. , 2010, , .		1
80	Fabrication of micro/nanometer-channel by Near-Field ElectroSpinning. , 2011, , .		1
81	Conductive micro silver wires via aerosol deposition. , 2012, , .		1
82	Electrohydrodynamic Direct Writing Platform Based on Near-Field Electrospinning. Key Engineering Materials, 0, 562-565, 614-619.	0.4	1
83	Continuous Near-Field Electrospraying Using a Glass Capillary Nozzle. Micromachines, 2018, 9, 56.	2.9	1
84	Sinusoidal AC-induced electrohydrodynamic direct-writing nanofibers on insulating collector. Modern Physics Letters B, 2021, 35, 2140009.	1.9	1
85	Recognition of jet modes in electrohydrodynamic direct-writing based on image segmentation. Modern Physics Letters B, 2022, 36, .	1.9	1
86	Research on the figure of merit for PVA nanofibrous membrane filters. , 2010, , .		0
87	Stresses dominate pulsated electrohydrodynamic spraying modes in near field. , 2011, , .		O
88	Explore on Pressure-Drop Performance of Nanofibrous Filtration Membrane. Advanced Materials Research, 2011, 236-238, 1885-1888.	0.3	0
89	Electrohydrodynamic Printing of Conductive Patterns on Glass Slides. Key Engineering Materials, 0, 483, 251-254.	0.4	0
90	Electrohydrodynamic impulse printing PANI sensor for NH3 gas. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2012, 226, 9-13.	0.1	0

#	Article	IF	CITATIONS
91	Micro/nano structure written via sheath gas assisted EHD jet. , 2013, , .		0
92	Closed Loop Dynamic Fuzzy Neural Network for Real-Time Lifetime Forecasting. Advanced Materials Research, 0, 834-836, 1074-1080.	0.3	0
93	Electrohydrodynamic Printing via Spinneret with Conductive Probe. Key Engineering Materials, 2013, 562-565, 1155-1160.	0.4	0
94	Pattern stretchable micro-nano thin film via Electrohydrodynamic Direct-Writing. , 2013, , .		0
95	3d printing stereo networks microfluidic concentration gradient chip. , 2016, , .		0
96	Design of Airflow Assisted Spinneret for Electrohydrodynamic Direct-Writing. , 2018, , .		0
97	Fabrication of Uniform Patterns via Constant-Current Electrohydrodynamic Printing. , 2018, , .		0
98	Orderly deposition of multiâ€layer nanofibrous membrane by electrohydrodynamic direct writing. Micro and Nano Letters, 2019, 14, 458-461.	1.3	0
99	Characteristic Parameters Affecting the Filtration Performance in Fibrous Porous Media., 2019,,.		0
100	Evolution of a Superhydrophobic H59 Brass Surface by Using Laser Texturing via Post Thermal Annealing. Micromachines, 2020, 11, 1057.	2.9	0
101	Nanostructures by Electrospinning. , 2015, , 1-10.		0
102	Nanostructures by Electrospinning. , 2016, , 2788-2797.		0
103	The Remote and High Precision Current Control System of Multiple High Power LEDS. , 2017, , .		O