Gabriela Minigo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/75978/publications.pdf

Version: 2024-02-01

304368 315357 2,038 37 22 38 h-index citations g-index papers 39 39 39 3473 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pathogen recognition and development of particulate vaccines: Does size matter?. Methods, 2006, 40, 1-9.	1.9	509
2	Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients. Critical Care, 2014, 18, R163.	2.5	166
3	Poly-I-lysine-coated nanoparticles: A potent delivery system to enhance DNA vaccine efficacy. Vaccine, 2007, 25, 1316-1327.	1.7	122
4	Parasite-Dependent Expansion of TNF Receptor II–Positive Regulatory T Cells with Enhanced Suppressive Activity in Adults with Severe Malaria. PLoS Pathogens, 2009, 5, e1000402.	2.1	118
5	Apoptosis and dysfunction of blood dendritic cells in patients with falciparum and vivax malaria. Journal of Experimental Medicine, 2013, 210, 1635-1646.	4.2	94
6	IgM in human immunity to <i>Plasmodium falciparum</i> malaria. Science Advances, 2019, 5, eaax4489.	4.7	92
7	Platelets kill circulating parasites of all major Plasmodium species in human malaria. Blood, 2018, 132, 1332-1344.	0.6	85
8	Antibodies to <i>Plasmodium falciparum</i> i>and <i>Plasmodium vivax</i> Merozoite Surface Protein 5 in Indonesia: Speciesâ€Specific and Crossâ€Reactive Responses. Journal of Infectious Diseases, 2008, 198, 134-142.	1.9	65
9	Heroes or villains? T regulatory cells in malaria infection. Trends in Parasitology, 2010, 26, 16-25.	1.5	65
10	Promising particle-based vaccines in cancer therapy. Expert Review of Vaccines, 2008, 7, 1103-1119.	2.0	61
11	Experimentally induced blood stage malaria infection as a tool for clinical research. Trends in Parasitology, 2012, 28, 515-521.	1.5	60
12	Low-Level Plasmodium falciparum Blood-Stage Infection Causes Dendritic Cell Apoptosis and Dysfunction in Healthy Volunteers. Journal of Infectious Diseases, 2012, 206, 333-340.	1.9	57
13	Mannan-mediated gene delivery for cancer immunotherapy. Immunology, 2007, 120, 325-335.	2.0	52
14	Circulating Neutrophil Extracellular Traps and Neutrophil Activation Are Increased in Proportion to Disease Severity in Human Malaria. Journal of Infectious Diseases, 2019, 219, 1994-2004.	1.9	46
15	A Complementary Role for the Tetraspanins CD37 and Tssc6 in Cellular Immunity. Journal of Immunology, 2010, 185, 3158-3166.	0.4	44
16	The Essential Role of Lipopolysaccharide-Binding Protein in Protection of Mice Against a Peritoneal <i>Salmonella</i> Infection Involves the Rapid Induction of an Inflammatory Response. Journal of Immunology, 2001, 167, 1624-1628.	0.4	41
17	The good, the bad and the ugly: how altered peptide ligands modulate immunity. Expert Opinion on Biological Therapy, 2008, 8, 1873-1884.	1.4	37
18	Dysregulated IL- $1\hat{1}^2$ -GM-CSF Axis in Acute Rheumatic Fever That Is Limited by Hydroxychloroquine. Circulation, 2018, 138, 2648-2661.	1.6	33

#	Article	IF	Citations
19	Preserved Dendritic Cell HLA-DR Expression and Reduced Regulatory T Cell Activation in Asymptomatic Plasmodium falciparum and P. vivax Infection. Infection and Immunity, 2015, 83, 3224-3232.	1.0	27
20	Antiphosphatidylserine Immunoglobulin M and Immunoglobulin G Antibodies Are Higher in Vivax Than Falciparum Malaria, and Associated With Early Anemia in Both Species. Journal of Infectious Diseases, 2019, 220, 1435-1443.	1.9	26
21	Plasmacytoid dendritic cells appear inactive during sub-microscopic Plasmodium falciparum blood-stage infection, yet retain their ability to respond to TLR stimulation. Scientific Reports, 2017, 7, 2596.	1.6	24
22	DimorphicPlasmodium falciparum merozoite surface protein-1 epitopes turn off memory T cells and interfere with T cell priming. European Journal of Immunology, 2006, 36, 1168-1178.	1.6	23
23	Profoundly Reduced CD1c ⁺ Myeloid Dendritic Cell HLA-DR and CD86 Expression and Increased Tumor Necrosis Factor Production in Experimental Human Blood-Stage Malaria Infection. Infection and Immunity, 2016, 84, 1403-1412.	1.0	22
24	Early Immune Regulatory Changes in a Primary Controlled Human Plasmodium vivax Infection: CD1c ⁺ Myeloid Dendritic Cell Maturation Arrest, Induction of the Kynurenine Pathway, and Regulatory T Cell Activation. Infection and Immunity, 2017, 85, .	1.0	22
25	Plasmodium falciparum Activates CD16+ Dendritic Cells to Produce Tumor Necrosis Factor and Interleukin-10 in Subpatent Malaria. Journal of Infectious Diseases, 2019, 219, 660-671.	1.9	17
26	Transcriptional profiling and immunophenotyping show sustained activation of blood monocytes in subpatent <i>Plasmodium falciparum</i> infection. Clinical and Translational Immunology, 2020, 9, e1144.	1.7	13
27	Characterization of blood dendritic and regulatory T cells in asymptomatic adults with sub-microscopic Plasmodium falciparum or Plasmodium vivax infection. Malaria Journal, 2016, 15, 328.	0.8	12
28	Differential Cellular Recognition of Antigens During Acute Plasmodium falciparum and Plasmodium vivax Malaria. Journal of Infectious Diseases, 2011, 203, 1192-1199.	1.9	7
29	Predicting memory: a prospective readout for malaria vaccines?. Trends in Parasitology, 2007, 23, 341-343.	1.5	6
30	Adults with Plasmodium falciparum malaria have higher magnitude and quality of circulating T-follicular helper cells compared to children. EBioMedicine, 2022, 75, 103784.	2.7	6
31	Age-dependent changes in circulating Tfh cells influence development of functional malaria antibodies in children. Nature Communications, 2022, 13, .	5 . 8	6
32	LBP, CD14, TLR4 and the murine innate immune response to a peritoneal <i>Salmonella</i> infection. Journal of Endotoxin Research, 2001, 7, 447-450.	2,5	4
33	A new boost for malaria vaccines. Trends in Parasitology, 2004, 20, 157-160.	1.5	3
34	A population of CD4 hi CD38 hi T cells correlates with disease severity in patients with acute malaria. Clinical and Translational Immunology, 2020, 9, e1209.	1.7	3
35	Reduced circulating dendritic cells in acute Plasmodium knowlesi and Plasmodium falciparum malaria despite elevated plasma Flt3 ligand levels. Malaria Journal, 2021, 20, 97.	0.8	3
36	Vaccination with Altered Peptide Ligands of a Plasmodium berghei Circumsporozoite Protein CD8 T-Cell Epitope: A Model to Generate T Cells Resistant to Immune Interference by Polymorphic Epitopes. Frontiers in Immunology, 2017, 8, 115.	2.2	1

#	Article	IF	CITATIONS
37	Altered Peptide Ligand Antagonism: From Immune Evasion to Immunotherapy. Drug Design Reviews Online, 2004, 1, 145-151.	0.7	1