

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7597756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation. LWT - Food Science and Technology, 2022, 153, 112486.	5.2	27
2	Exopolysaccharides Produced by Lactic Acid Bacteria: From Biosynthesis to Health-Promoting Properties. Foods, 2022, 11, 156.	4.3	91
3	Application of Enterococcus malodoratus SJC25 for the Manufacture of Whey-Based Beverage Naturally Enriched with GABA. Foods, 2022, 11, 447.	4.3	4
4	Production of low-cholesterol butter with Lacticaseibacillus paracasei immobilized in calcium-alginate beads. Food Chemistry, 2022, 393, 133419.	8.2	1
5	A rapid screening method to evaluate acidifying activity by lactic acid bacteria. Journal of Microbiological Methods, 2021, 185, 106227.	1.6	11
6	Application of Near Infrared Reflectance (NIR) spectroscopy to predict the moisture, protein, and fat content of beef for gourmet hamburger preparation. Livestock Science, 2021, 254, 104772.	1.6	12
7	Histamine and cholesterol lowering abilities of lactic acid bacteria isolated from artisanal Pico cheese. Journal of Applied Microbiology, 2020, 129, 1428-1440.	3.1	14
8	Artisanal Pico cheese as reservoir of <i>Enterococcus</i> species possessing virulence and antibiotic resistance properties: implications for food safety. Food Biotechnology, 2020, 34, 25-41.	1.5	15
9	Physicochemical traits and sensory quality of commercial butter produced in the Azores. International Dairy Journal, 2019, 88, 10-17.	3.0	12
10	Potential of lactic acid bacteria from Pico cheese for starter culture development. Food Science and Technology International, 2019, 25, 303-317.	2.2	27
11	Conjugated linoleic acid production and probiotic assessment of Lactobacillus plantarum isolated from Pico cheese. LWT - Food Science and Technology, 2018, 90, 403-411.	5.2	36
12	Isolation and characterization of an exopolysaccharideâ€producing <i>Leuconostoc citreum</i> strain from artisanal cheese. Letters in Applied Microbiology, 2018, 67, 570-578.	2.2	17
13	Production of â€aminobutyric acid (<scp>GABA</scp>) by <i>Lactobacillus otakiensis</i> and other <i>Lactobacillus</i> sp. isolated from traditional Pico cheese. International Journal of Dairy Technology, 2018, 71, 1012-1017.	2.8	29
14	Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Frontiers in Microbiology, 2018, 9, 594.	3.5	340
15	Physicochemical, biochemical, microbiological and safety aspects of Pico cheese: Assessment throughout maturation and on the final product. International Journal of Dairy Technology, 2017, 70, 542-555.	2.8	7
16	Immunomodulatory activity of exopolysaccharide producing Leuconostoc citreum strain isolated from Pico cheese. Journal of Functional Foods, 2017, 33, 235-243.	3.4	25
17	Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese. Food Microbiology, 2017, 63, 178-190.	4.2	132
18	Characterization and Application of Antilisterial Enterocins on Model Fresh Cheese. Journal of Food Protection, 2017, 80, 1303-1316.	1.7	24

CC SILVA

#	Article	IF	CITATIONS
19	An anti-listerial Lactococcus lactis strain isolated from Azorean Pico cheese produces lacticin 481. International Dairy Journal, 2016, 63, 18-28.	3.0	34
20	Safety and technological properties of bacteriocinogenic enterococci isolates from Tunisia. Journal of Applied Microbiology, 2015, 119, 1089-1100.	3.1	28
21	Short communication: Latin-style fresh cheese enhances lactic acid bacteria survival but not Listeria monocytogenes resistance under in vitro simulated gastrointestinal conditions. Journal of Dairy Science, 2015, 98, 4377-4383.	3.4	22
22	Characterization of the bacterial biodiversity in Pico cheese (an artisanal Azorean food). International Journal of Food Microbiology, 2015, 192, 86-94.	4.7	80
23	Effect of corn supplementation of grass finishing of Holstein bulls on fatty acid composition of meat lipids1. Journal of Animal Science, 2014, 92, 3701-3714.	0.5	19
24	Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese an artisanal cow's milk cheese. Journal of Applied Microbiology, 2014, 116, 573-585.	3.1	65
25	Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria. International Journal of Food Microbiology, 2014, 191, 53-59.	4.7	90
26	The effect of melatonin treatment in rams on seasonal variation of testicular size and semen production parameters. Small Ruminant Research, 2012, 102, 197-201.	1.2	22
27	Consumption of high energy maize diets is associated with increased soluble collagen in muscle of Holstein bulls. Meat Science, 2010, 86, 753-757.	5.5	17
28	Seasonal variations in the developmental competence of bovine oocytes matured in vitro. Veterinary Record, 2006, 158, 473-475.	0.3	5
29	The effect of ram replacement and sex ratio on the sexual response of anoestrous ewes. Small Ruminant Research, 2006, 65, 223-229.	1.2	1
30	The effect of paddock size on the response of seasonal anoestrous ewes to the ram effect. Small Ruminant Research, 2003, 48, 233-237.	1.2	2
31	Immunohistochemical localization of inhibin/activin alpha, betaA and betaB subunits and follistatin in bovine oocytes during in vitro maturation and fertilization. Reproduction, 2003, 125, 33-42.	2.6	23
32	Effects of androgens, progesterone and their antagonists on the developmental competence of in vitro matured bovine oocytes. Reproduction, 2000, 119, 261-269.	2.6	27
33	Effects of androgens, progesterone and their antagonists on the developmental competence of in vitro matured bovine oocytes. Reproduction, 2000, 119, 261-269.	0.2	46
34	Demonstration of a suppressive effect of inhibin Â-subunit on the developmental competence of in vitro matured bovine oocytes. Reproduction, 1999, 115, 381-388.	2.6	36
35	Modulatory Actions of Activin-A and Follistatin on the Developmental Competence of In Vitro-Matured Bovine Oocytes1. Biology of Reproduction, 1998, 58, 558-565.	2.7	80
36	Storage Temperature Effect on Histamine Formation in Big Eye Tuna and Skipjack. Journal of Food Science, 1998, 63, 644-647.	3.1	57