## Michelle E Kimple

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7597737/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health. Cell Reports, 2016,<br>16, 520-530.                                                          | 6.4  | 334       |
| 2  | Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits. Nature, 2002, 416, 878-881.                                                     | 27.8 | 252       |
| 3  | Restoration of metabolic health by decreased consumption of branchedâ€chain amino acids. Journal of<br>Physiology, 2018, 596, 623-645.                                      | 2.9  | 242       |
| 4  | Overview of Affinity Tags for Protein Purification. Current Protocols in Protein Science, 2013, 73, 9.9.1-9.9.23.                                                           | 2.8  | 205       |
| 5  | Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell, 2016, 15, 28-38.                        | 6.7  | 144       |
| 6  | Involvement of a Mitochondrial Phosphatase in the Regulation of ATP Production and Insulin Secretion in Pancreatic Î <sup>2</sup> Cells. Molecular Cell, 2005, 19, 197-207. | 9.7  | 138       |
| 7  | Prostaglandin E2 Receptor, EP3, Is Induced in Diabetic Islets and Negatively Regulates Glucose- and<br>Hormone-Stimulated Insulin Secretion. Diabetes, 2013, 62, 1904-1912. | 0.6  | 96        |
| 8  | Overview of Affinity Tags for Protein Purification. Current Protocols in Protein Science, 2004, 36,<br>Unit 9.9.                                                            | 2.8  | 82        |
| 9  | Phenotypic Characterization of MIP-CreERT1Lphi Mice With Transgene-Driven Islet Expression of Human Growth Hormone. Diabetes, 2015, 64, 3798-3807.                          | 0.6  | 77        |
| 10 | Shortâ€ŧerm methionine deprivation improves metabolic health <i>via</i> sexually dimorphic,<br>mTORCIâ€independent mechanisms. FASEB Journal, 2018, 32, 3471-3482.          | 0.5  | 73        |
| 11 | Pancreatic β-Cells From Mice Offset Age-Associated Mitochondrial Deficiency With Reduced KATP<br>Channel Activity. Diabetes, 2016, 65, 2700-2710.                           | 0.6  | 59        |
| 12 | Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis.<br>Molecular Endocrinology, 2015, 29, 978-987.                           | 3.7  | 46        |
| 13 | Opposing effects of prostaglandin E 2 receptors EP3 and EP4 on mouse and human β-cell survival and proliferation. Molecular Metabolism, 2017, 6, 548-559.                   | 6.5  | 45        |
| 14 | A Role for Gz in Pancreatic Islet β-Cell Biology. Journal of Biological Chemistry, 2005, 280, 31708-31713.                                                                  | 3.4  | 44        |
| 15 | Gαz Negatively Regulates Insulin Secretion and Glucose Clearance. Journal of Biological Chemistry,<br>2008, 283, 4560-4567.                                                 | 3.4  | 44        |
| 16 | Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes.<br>Experimental and Molecular Medicine, 2014, 46, e102-e102.              | 7.7  | 43        |
| 17 | A Method for Mouse Pancreatic Islet Isolation and Intracellular cAMP Determination. Journal of Visualized Experiments, 2014, , e50374.                                      | 0.3  | 41        |
| 18 | Enriching Islet Phospholipids With Eicosapentaenoic Acid Reduces Prostaglandin E2 Signaling and<br>Enhances Diabetic β-Cell Function. Diabetes, 2017, 66, 1572-1585.        | 0.6  | 41        |

MICHELLE E KIMPLE

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Deletion of GαZ Protein Protects against Diet-induced Glucose Intolerance via Expansion of β-Cell Mass.<br>Journal of Biological Chemistry, 2012, 287, 20344-20355.                                                                | 3.4 | 39        |
| 20 | Rap1 Promotes Multiple Pancreatic Islet Cell Functions and Signals through Mammalian Target of<br>Rapamycin Complex 1 to Enhance Proliferation. Journal of Biological Chemistry, 2010, 285, 15777-15785.                           | 3.4 | 36        |
| 21 | Tcf19 is a novel islet factor necessary for proliferation and survival in the INS-1 β-cell line. American<br>Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E600-E610.                                           | 3.5 | 33        |
| 22 | A single-islet microplate assay to measure mouse and human islet insulin secretion. Islets, 2015, 7, e1076607.                                                                                                                     | 1.8 | 32        |
| 23 | Radiomanganese PET Detects Changes in Functional β-Cell Mass in Mouse Models of Diabetes. Diabetes, 2017, 66, 2163-2174.                                                                                                           | 0.6 | 32        |
| 24 | Complement 1q-like-3 protein inhibits insulin secretion from pancreatic β-cells via the cell adhesion G<br>protein–coupled receptor BAI3. Journal of Biological Chemistry, 2018, 293, 18086-18098.                                 | 3.4 | 31        |
| 25 | Synergy Between Gαz Deficiency and GLP-1 Analog Treatment in Preserving Functional β-Cell Mass in<br>Experimental Diabetes. Molecular Endocrinology, 2016, 30, 543-556.                                                            | 3.7 | 26        |
| 26 | Spontaneous Tumor Lysis Syndrome. Journal of Investigative Medicine High Impact Case Reports, 2015, 3, 232470961560319.                                                                                                            | 0.6 | 25        |
| 27 | The Inhibitory G Protein α-Subunit, Gαz, Promotes Type 1 Diabetes-Like Pathophysiology in NOD Mice.<br>Endocrinology, 2017, 158, 1645-1658.                                                                                        | 2.8 | 21        |
| 28 | A human pancreatic ECM hydrogel optimized for 3-D modeling of the islet microenvironment.<br>Scientific Reports, 2022, 12, 7188.                                                                                                   | 3.3 | 21        |
| 29 | EPAC–RAP1 Axis-Mediated Switch in the Response of Primary and Metastatic Melanoma to Cyclic AMP.<br>Molecular Cancer Research, 2017, 15, 1792-1802.                                                                                | 3.4 | 18        |
| 30 | Age-Dependent Protection of Insulin Secretion in Diet Induced Obese Mice. Scientific Reports, 2018, 8,<br>17814.                                                                                                                   | 3.3 | 16        |
| 31 | Systemic Metabolic Alterations Correlate with Islet-Level Prostaglandin E2 Production and Signaling<br>Mechanisms That Predict Î <sup>2</sup> -Cell Dysfunction in a Mouse Model of Type 2 Diabetes. Metabolites, 2021, 11,<br>58. | 2.9 | 16        |
| 32 | Effects of Arachidonic Acid and Its Metabolites on Functional Beta-Cell Mass. Metabolites, 2022, 12, 342.                                                                                                                          | 2.9 | 16        |
| 33 | Ultrahigh-Resolution Mass Spectrometry-Based Platform for Plasma Metabolomics Applied to Type 2<br>Diabetes Research. Journal of Proteome Research, 2021, 20, 463-473.                                                             | 3.7 | 15        |
| 34 | Dietary polyunsaturated fatty acids and their metabolites: Implications for diabetes pathophysiology, prevention, and treatment. Nutrition and Healthy Aging, 2017, 4, 127-140.                                                    | 1.1 | 14        |
| 35 | Agonist-independent Gαz activity negatively regulates beta-cell compensation in a diet-induced obesity model of type 2 diabetes. Journal of Biological Chemistry, 2021, 296, 100056.                                               | 3.4 | 14        |
| 36 | Pharmacological blockade of the EP3 prostaglandin E2 receptor in the setting of type 2 diabetes<br>enhances β-cell proliferation and identity and relieves oxidative damage. Molecular Metabolism, 2021,<br>54, 101347.            | 6.5 | 14        |

MICHELLE E KIMPLE

| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The EP3 Receptor/Gz Signaling Axis as a Therapeutic Target for Diabetes and Cardiovascular Disease.<br>AAPS Journal, 2017, 19, 1276-1283.                                                                                                                                             | 4.4 | 12        |
| 38 | Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus.<br>Experimental Biology and Medicine, 2018, 243, 586-591.                                                                                                                        | 2.4 | 12        |
| 39 | Platelet Dysfunction in Type 1 Diabetes: Stressing the Thromboxanes. Diabetes, 2016, 65, 349-351.                                                                                                                                                                                     | 0.6 | 11        |
| 40 | Rat prostaglandin EP3 receptor is highly promiscuous and is the sole prostanoid receptor family<br>member that regulates INSâ€1 (832/3) cell glucoseâ€stimulated insulin secretion. Pharmacology Research<br>and Perspectives, 2021, 9, e00736.                                       | 2.4 | 11        |
| 41 | Human Islet Expression Levels of Prostaglandin E <sub>2</sub> Synthetic Enzymes, But Not<br>Prostaglandin EP3 Receptor, Are Positively Correlated with Markers of β-Cell Function and Mass in<br>Nondiabetic Obesity. ACS Pharmacology and Translational Science, 2021, 4, 1338-1348. | 4.9 | 10        |
| 42 | The gastrin-releasing peptide analog bombesin preserves exocrine and endocrine pancreas morphology and function during parenteral nutrition. American Journal of Physiology - Renal Physiology, 2015, 309, G431-G442.                                                                 | 3.4 | 9         |
| 43 | Differential Expression of Ormdl Genes in the Islets of Mice and Humans with Obesity. IScience, 2020, 23, 101324.                                                                                                                                                                     | 4.1 | 9         |
| 44 | Signaling Through Gz. , 2010, , 1649-1653.                                                                                                                                                                                                                                            |     | 7         |
| 45 | Bombesin Preserves Goblet Cell Resistin-Like Molecule β During Parenteral Nutrition but Not Other<br>Goblet Cell Products. Journal of Parenteral and Enteral Nutrition, 2016, 40, 1042-1049.                                                                                          | 2.6 | 7         |
| 46 | The influence of intermittent hypoxia, obesity, and diabetes on male genitourinary anatomy and voiding physiology. American Journal of Physiology - Renal Physiology, 2021, 321, F82-F92.                                                                                             | 2.7 | 7         |
| 47 | Prostaglandin EP3 receptor signaling is required to prevent insulin hypersecretion and metabolic<br>dysfunction in a non-obese mouse model of insulin resistance. American Journal of Physiology -<br>Endocrinology and Metabolism, 2021, 321, E479-E489.                             | 3.5 | 4         |
| 48 | The EP3 Receptor: Exploring a New Target for Type 2 Diabetes Therapeutics. Journal of Endocrinology,<br>Diabetes & Obesity, 2013, 1, .                                                                                                                                                | 0.7 | 4         |
| 49 | The effects of Gαz signaling on pancreatic βâ€cell function and mass. FASEB Journal, 2012, 26, 615.7.                                                                                                                                                                                 | 0.5 | 1         |
| 50 | Identification of key signaling molecules downstream of cAMP that regulate insulin secretion. FASEB<br>Journal, 2013, 27, 1031.24.                                                                                                                                                    | 0.5 | 0         |
| 51 | Elucidating the role of inhibitory Gâ€protein, Gz, in βâ€cell preservation and regeneration (1062.3). FASEB<br>Journal, 2014, 28, 1062.3.                                                                                                                                             | 0.5 | 0         |
| 52 | Altering betaâ€cell phospholipid composition affects diabetic betaâ€cell dysfunction (796.15). FASEB<br>Journal, 2014, 28, 796.15.                                                                                                                                                    | 0.5 | 0         |
| 53 | Mimicking the Diabetic State in the Nonâ€Diabetic βâ€cell to Elucidate Critical Pathways in βâ€cell<br>Dysfunction. FASEB Journal, 2015, 29, 974.16.                                                                                                                                  | 0.5 | 0         |
| 54 | The Inhibitory Gâ€protein, G z , Accelerates the Progression of Insulitis and Hyperglycemia in a Type 1<br>Diabetes Mouse Model. FASEB Journal, 2015, 29, 973.1.                                                                                                                      | 0.5 | 0         |

MICHELLE E KIMPLE

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Beta ellâ€specific loss of the inhibitory G protein, Gα z , prevents development of Type 1 Diabetes in NOD<br>mice FASEB Journal, 2018, 32, 661.5.                                                                                 | 0.5 | 0         |
| 56 | Coordinated Crossâ€ŧalk between calcium and cAMP in regulating pulsatile insulin secretion: A novel<br>role for the unique inhibitory Gâ€protein, Gαz, in regulating βâ€cell function. FASEB Journal, 2018, 32, 666.9.             | 0.5 | 0         |
| 57 | Loss of the unique inhibitory Gâ€protein, Gα z , in the pancreatic βâ€cell protects against dietâ€induced<br>glucose intolerance by enhancing insulin secretion, but is not βâ€cell autonomous. FASEB Journal, 2018,<br>32, 661.9. | 0.5 | Ο         |
| 58 | Role of the heterotrimeric inhibitory Gâ€protein, Gαz, and its unique Gâ€protein coupled receptor, EP3, in<br>the progression and pathophysiology of Type 2 Diabetes. FASEB Journal, 2019, 33, 514.16.                             | 0.5 | 0         |
| 59 | Increasing the dietary ratio of omega 3:omega 6 polyunsaturated fatty acids positively impacts inflammation and islet outcomes in Type 1 Diabetes. FASEB Journal, 2019, 33, 680.9.                                                 | 0.5 | 0         |
| 60 | Betaâ€cellâ€specific loss of the inhibitory G protein, Gα z , alters development and pathophysiology of Type<br>1 Diabetes. FASEB Journal, 2019, 33, 680.14.                                                                       | 0.5 | 0         |
| 61 | SAT-168 A Secreted Protein Complement 1q Like-3 Protein Inhibits Insulin Secretion by an Adhesion<br>G-Protein Coupled Receptor, BAI3 in Pancreatic β-Cells. Journal of the Endocrine Society, 2019, 3, .                          | 0.2 | 0         |
| 62 | The inhibitory heterotrimeric G protein, G z , regulates alphaâ€cell active glucagonâ€like peptide 1 (GLPâ€1)<br>levels. FASEB Journal, 2019, 33, 809.3.                                                                           | 0.5 | 0         |
| 63 | Loss of βâ€cell Gα z protects against highâ€fat diet induced glucose intolerance by preserving incretin<br>responsiveness and enhancing insulin secretion. FASEB Journal, 2020, 34, 1-1.                                           | 0.5 | 0         |
| 64 | Betaâ€cellâ€specific Loss of the Inhibitory G protein, Gα <sub>z</sub> , has Sexâ€dependent Effects on<br>Development and Pathophysiology of Type 1 Diabetes. FASEB Journal, 2020, 34, 1-1.                                        | 0.5 | 0         |
| 65 | Affinity Tag for Protein Purification and Detection Based on the Disulfide-Linked Complex of InaD and<br>NorpA. BioTechniques, 2002, 33, 578-590.                                                                                  | 1.8 | 0         |